Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 152771 by Tawa11 last updated on 01/Sep/21

If    f(z)   =    z sin(z)   +   ∣z∣^2 ,       verify if   f(z)   satisfy cauchy rieman  condition

$$\mathrm{If}\:\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:=\:\:\:\:\mathrm{z}\:\mathrm{sin}\left(\mathrm{z}\right)\:\:\:+\:\:\:\mid\mathrm{z}\mid^{\mathrm{2}} ,\:\:\:\:\:\:\:\mathrm{verify}\:\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:\mathrm{satisfy}\:\mathrm{cauchy}\:\mathrm{rieman} \\ $$$$\mathrm{condition} \\ $$

Commented by alisiao last updated on 01/Sep/21

f(z)= z sin(z) + z z^_     f(z) = (x + iy ) sin(x+iy) + x^2 −y^2     f(z)= (x +iy)[ sin(x) cos(iy) + cos(x) sin(iy)] + x^2 −y^2     f(z)=(x+iy) [  sin(x) cosh(y) + i cos(x) sinh(y)]+x^2 −y^2     f(z)= (x sin(x)cosh(y) − y cos(x)sinh(y) +x^2 −y^2  ] + i [ y sin(x) cosh(y) +x cos(x)sinh(y)]    U(x,y) = x sin(x) cosh(y) − y cos(x)sinh(y) +x^2 −y^2     V (x,y) = y sin(x)cosh(y) + x cos(y)sinh(y)    U_x  = x cos(x) cosh(y) +sin(x) cosh(y) + y sin(x) sinh(y) + 2x    U_y  = y sin(x) sinh(y)+sin(x) cosh(y) − y cos(x) cosh(y) − cos(x) sinh(y) − 2y    V_x  = y cos(x) cosh(y) + cos(y) sinh(y)    V_y  = y sin(x) sinh(y)+sin(x) cosh(y)+x cos(y) cosh(y) − x sin(y) cosh (y)    ∵ U_x  ≠ V _y         , U_y  ≠ − V_x     ∴ f(z) is dont satisfy cauchy rieman condition    ⟨ M . T ⟩

$${f}\left({z}\right)=\:{z}\:{sin}\left({z}\right)\:+\:{z}\:\overset{\_} {{z}} \\ $$$$ \\ $$$${f}\left({z}\right)\:=\:\left({x}\:+\:{iy}\:\right)\:{sin}\left({x}+{iy}\right)\:+\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$ \\ $$$${f}\left({z}\right)=\:\left({x}\:+{iy}\right)\left[\:{sin}\left({x}\right)\:{cos}\left({iy}\right)\:+\:{cos}\left({x}\right)\:{sin}\left({iy}\right)\right]\:+\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$ \\ $$$${f}\left({z}\right)=\left({x}+{iy}\right)\:\left[\:\:{sin}\left({x}\right)\:{cosh}\left({y}\right)\:+\:{i}\:{cos}\left({x}\right)\:{sinh}\left({y}\right)\right]+{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$ \\ $$$${f}\left({z}\right)=\:\left({x}\:{sin}\left({x}\right){cosh}\left({y}\right)\:−\:{y}\:{cos}\left({x}\right){sinh}\left({y}\right)\:+{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:\right]\:+\:{i}\:\left[\:{y}\:{sin}\left({x}\right)\:{cosh}\left({y}\right)\:+{x}\:{cos}\left({x}\right){sinh}\left({y}\right)\right] \\ $$$$ \\ $$$${U}\left({x},{y}\right)\:=\:{x}\:{sin}\left({x}\right)\:{cosh}\left({y}\right)\:−\:{y}\:{cos}\left({x}\right){sinh}\left({y}\right)\:+{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$ \\ $$$${V}\:\left({x},{y}\right)\:=\:{y}\:{sin}\left({x}\right){cosh}\left({y}\right)\:+\:{x}\:{cos}\left({y}\right){sinh}\left({y}\right) \\ $$$$ \\ $$$${U}_{{x}} \:=\:{x}\:{cos}\left({x}\right)\:{cosh}\left({y}\right)\:+{sin}\left({x}\right)\:{cosh}\left({y}\right)\:+\:{y}\:{sin}\left({x}\right)\:{sinh}\left({y}\right)\:+\:\mathrm{2}{x} \\ $$$$ \\ $$$${U}_{{y}} \:=\:{y}\:{sin}\left({x}\right)\:{sinh}\left({y}\right)+{sin}\left({x}\right)\:{cosh}\left({y}\right)\:−\:{y}\:{cos}\left({x}\right)\:{cosh}\left({y}\right)\:−\:{cos}\left({x}\right)\:{sinh}\left({y}\right)\:−\:\mathrm{2}{y} \\ $$$$ \\ $$$${V}_{{x}} \:=\:{y}\:{cos}\left({x}\right)\:{cosh}\left({y}\right)\:+\:{cos}\left({y}\right)\:{sinh}\left({y}\right) \\ $$$$ \\ $$$${V}_{{y}} \:=\:{y}\:{sin}\left({x}\right)\:{sinh}\left({y}\right)+{sin}\left({x}\right)\:{cosh}\left({y}\right)+{x}\:{cos}\left({y}\right)\:{cosh}\left({y}\right)\:−\:{x}\:{sin}\left({y}\right)\:{cosh}\:\left({y}\right) \\ $$$$ \\ $$$$\because\:{U}_{{x}} \:\neq\:{V}\:_{{y}} \:\:\:\:\:\:\:\:,\:{U}_{{y}} \:\neq\:−\:{V}_{{x}} \\ $$$$ \\ $$$$\therefore\:{f}\left({z}\right)\:{is}\:{dont}\:{satisfy}\:{cauchy}\:{rieman}\:{condition} \\ $$$$ \\ $$$$\langle\:{M}\:.\:{T}\:\rangle \\ $$

Commented by Tawa11 last updated on 01/Sep/21

God bless you sir. I appreciate your time

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com