Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 15284 by ajfour last updated on 09/Jun/17

Commented by ajfour last updated on 09/Jun/17

Q.14940  (general proof : sides    of ΔABC divided in n equal parts)

$${Q}.\mathrm{14940}\:\:\left({general}\:{proof}\::\:{sides}\:\right. \\ $$$$\left.\:{of}\:\Delta{ABC}\:{divided}\:{in}\:\boldsymbol{{n}}\:{equal}\:{parts}\right) \\ $$

Commented by RasheedSoomro last updated on 09/Jun/17

Sir you have told elsewhere that you  use  Lekh diagram.  Can we draw scaled figures with it like  geogebra?

$$\mathrm{Sir}\:\mathrm{you}\:\mathrm{have}\:\mathrm{told}\:\mathrm{elsewhere}\:\mathrm{that}\:\mathrm{you} \\ $$$$\mathrm{use}\:\:{Lekh}\:{diagram}. \\ $$$${C}\mathrm{an}\:\mathrm{we}\:\mathrm{draw}\:\mathrm{scaled}\:\mathrm{figures}\:\mathrm{with}\:\mathrm{it}\:\mathrm{like} \\ $$$$\mathrm{geogebra}? \\ $$

Commented by ajfour last updated on 10/Jun/17

it is nothing compared to geogebra,  i use these other apps coz my  old and simple device dont support  geogebra and many others..

$${it}\:{is}\:{nothing}\:{compared}\:{to}\:{geogebra}, \\ $$$${i}\:{use}\:{these}\:{other}\:{apps}\:{coz}\:{my} \\ $$$${old}\:{and}\:{simple}\:{device}\:{dont}\:{support} \\ $$$${geogebra}\:{and}\:{many}\:{others}.. \\ $$

Answered by ajfour last updated on 09/Jun/17

Origin: centroid of ΔABC of  sides AB=nc, BC=na, AC=nb   a+b+c=0  (vector sum)  a×a=b×b=c×c=0  a×b=b×c=c×a=2t_0   ∀  t_0  is area of triangle witb sides  a, b, and c .  position vector of point B :  r_B ^� =((1/2))((2/3))(−na)+((1/3))(nc)      =(n/3)(c−a) .  Eqn of line IG :    r^� = OI+λ(IG)      = r_B ^� +a+λ[(n−2)a−c]   ...(i)  Eqn of line EF :    r^� = OE+μ(EF)      = r_B ^� −c+μ[c+(n−1)a]     ...(ii)   P  is intersection of IG and EF   equating (ii) and (i) for point P :    a[1+λ(n−2)−μ(n−1)]+             c[−λ+1−μ] =0  ⇒ λ(n−2)−μ(n−1)=−1  and            λ+μ=1  or  λ(n−1)+μ(n−1)=n−1  adding to get λ =((n−2)/(2n−3)) = ((IP)/(IG))     μ=1−(((n−2))/(2n−3)) = ((n−1)/(2n−3)) = ((ET)/(EF))  Eqn of HT :    r^� = OI−ρ(HI)      = (n/3)(c−a)+a−ρ[(n−1)c+a]   Eqn of EF :    r^� = (n/3)(c−a)−c+κ[(c+(n−1)a]  equating them for point T :   a[1−ρ−κ(n−1)]+c[−ρ(n−1)+1−κ]=0  ⇒  ρ+κ(n−1)=1      ....(iii) and         ρ(n−1)+κ =1  or  ρ(n−1)^2 +κ(n−1)=n−1   ..(iv)    (iv)−(iii) gives:   ρ=((n−2)/((n−1)^2 −1))=(1/n)  =((TI)/(HI))    κ=1−ρ(n−1)=1−(((n−1))/n)=(1/n)       =((ET)/(EF))  .  Area(ΔTIP)=(IP×IT)/2     =((λ(IG)×(−ρ)(HI))/2)     =((1/(2n)))(((n−2)/(2n−3)))[(n−2)a−c]×[−(n−1)c−a]    =(((n−2))/(2n(2n−3)))[(n−1)(n−2)+1](c×a)    =(((n−2)(n^2 −3n+3))/(n(2n−3))) t_0   Area(ΔIGH)=((IG×IH)/2)      =(([(n−2)a−c]×[−a−(n−1)c])/2)     =(([(n−1)(n−2)+1])/2)(c×a)     = (n^2 −3n+3)t_0  .  Area(considered hexagon)      = Area(ΔIGH)−3Area(ΔTIP)      =(n^2 −3n+3)t_0 −((3(n−2)(n^2 −3n+3)t_0 )/(n(2n−3)))      =(n^2 −3n+3)[1−((3(n−2))/(n(2n−3)))]t_0      =(n^2 −3n+3)(((2n^2 −6n+6))/(n(2n−3)))t_0      = ((2(n^2 −3n+3)^2 )/(n(2n−3))) t_0   .  Area(ΔABC)=((nc×na)/2)                (n^2 /2)(c×a)=(n^2 /2)(2t_0 )=n^2 t_0   ((Area(hexagon))/(Area(ΔABC)))=((2(n^2 −3n+3)^2 )/(n^3 (2n−3))) .

$${Origin}:\:{centroid}\:{of}\:\Delta{ABC}\:{of} \\ $$$${sides}\:{AB}={nc},\:{BC}={na},\:{AC}={nb} \\ $$$$\:\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}=\mathrm{0}\:\:\left({vector}\:{sum}\right) \\ $$$$\boldsymbol{{a}}×\boldsymbol{{a}}=\boldsymbol{{b}}×\boldsymbol{{b}}=\boldsymbol{{c}}×\boldsymbol{{c}}=\mathrm{0} \\ $$$$\boldsymbol{{a}}×\boldsymbol{{b}}=\boldsymbol{{b}}×\boldsymbol{{c}}=\boldsymbol{{c}}×\boldsymbol{{a}}=\mathrm{2}\boldsymbol{{t}}_{\mathrm{0}} \\ $$$$\forall\:\:{t}_{\mathrm{0}} \:{is}\:{area}\:{of}\:{triangle}\:{witb}\:{sides} \\ $$$$\boldsymbol{{a}},\:\boldsymbol{{b}},\:{and}\:\boldsymbol{{c}}\:. \\ $$$${position}\:{vector}\:{of}\:{point}\:{B}\:: \\ $$$$\bar {{r}}_{{B}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\left(−{n}\boldsymbol{{a}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\left({n}\boldsymbol{{c}}\right) \\ $$$$\:\:\:\:=\frac{{n}}{\mathrm{3}}\left(\boldsymbol{{c}}−\boldsymbol{{a}}\right)\:. \\ $$$${Eqn}\:{of}\:{line}\:{IG}\:: \\ $$$$\:\:\bar {\boldsymbol{{r}}}=\:{OI}+\lambda\left({IG}\right) \\ $$$$\:\:\:\:=\:\bar {\boldsymbol{{r}}}_{{B}} +\boldsymbol{{a}}+\lambda\left[\left({n}−\mathrm{2}\right)\boldsymbol{{a}}−\boldsymbol{{c}}\right]\:\:\:...\left({i}\right) \\ $$$${Eqn}\:{of}\:{line}\:{EF}\:: \\ $$$$\:\:\bar {\boldsymbol{{r}}}=\:{OE}+\mu\left({EF}\right) \\ $$$$\:\:\:\:=\:\bar {\boldsymbol{{r}}}_{{B}} −\boldsymbol{{c}}+\mu\left[\boldsymbol{{c}}+\left({n}−\mathrm{1}\right)\boldsymbol{{a}}\right]\:\:\:\:\:...\left({ii}\right) \\ $$$$\:\boldsymbol{{P}}\:\:{is}\:{intersection}\:{of}\:{IG}\:{and}\:{EF} \\ $$$$\:{equating}\:\left({ii}\right)\:{and}\:\left({i}\right)\:{for}\:{point}\:{P}\:: \\ $$$$\:\:\boldsymbol{{a}}\left[\mathrm{1}+\lambda\left({n}−\mathrm{2}\right)−\mu\left({n}−\mathrm{1}\right)\right]+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{c}}\left[−\lambda+\mathrm{1}−\mu\right]\:=\mathrm{0} \\ $$$$\Rightarrow\:\lambda\left({n}−\mathrm{2}\right)−\mu\left({n}−\mathrm{1}\right)=−\mathrm{1}\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda+\mu=\mathrm{1} \\ $$$${or}\:\:\lambda\left({n}−\mathrm{1}\right)+\mu\left({n}−\mathrm{1}\right)={n}−\mathrm{1} \\ $$$${adding}\:{to}\:{get}\:\lambda\:=\frac{{n}−\mathrm{2}}{\mathrm{2}{n}−\mathrm{3}}\:=\:\frac{{IP}}{{IG}} \\ $$$$\:\:\:\mu=\mathrm{1}−\frac{\left({n}−\mathrm{2}\right)}{\mathrm{2}{n}−\mathrm{3}}\:=\:\frac{{n}−\mathrm{1}}{\mathrm{2}{n}−\mathrm{3}}\:=\:\frac{{ET}}{{EF}} \\ $$$${Eqn}\:{of}\:{HT}\:: \\ $$$$\:\:\bar {\boldsymbol{{r}}}=\:{OI}−\rho\left({HI}\right) \\ $$$$\:\:\:\:=\:\frac{{n}}{\mathrm{3}}\left(\boldsymbol{{c}}−\boldsymbol{{a}}\right)+\boldsymbol{{a}}−\rho\left[\left({n}−\mathrm{1}\right)\boldsymbol{{c}}+\boldsymbol{{a}}\right] \\ $$$$\:{Eqn}\:{of}\:{EF}\:: \\ $$$$\:\:\bar {\boldsymbol{{r}}}=\:\frac{{n}}{\mathrm{3}}\left(\boldsymbol{{c}}−\boldsymbol{{a}}\right)−\boldsymbol{{c}}+\kappa\left[\left(\boldsymbol{{c}}+\left({n}−\mathrm{1}\right)\boldsymbol{{a}}\right]\right. \\ $$$${equating}\:{them}\:{for}\:{point}\:{T}\:: \\ $$$$\:\boldsymbol{{a}}\left[\mathrm{1}−\rho−\kappa\left({n}−\mathrm{1}\right)\right]+\boldsymbol{{c}}\left[−\rho\left({n}−\mathrm{1}\right)+\mathrm{1}−\kappa\right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\rho+\kappa\left({n}−\mathrm{1}\right)=\mathrm{1}\:\:\:\:\:\:....\left({iii}\right)\:{and} \\ $$$$\:\:\:\:\:\:\:\rho\left({n}−\mathrm{1}\right)+\kappa\:=\mathrm{1} \\ $$$${or}\:\:\rho\left({n}−\mathrm{1}\right)^{\mathrm{2}} +\kappa\left({n}−\mathrm{1}\right)={n}−\mathrm{1}\:\:\:..\left({iv}\right) \\ $$$$\:\:\left({iv}\right)−\left({iii}\right)\:{gives}: \\ $$$$\:\rho=\frac{{n}−\mathrm{2}}{\left({n}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{{n}}\:\:=\frac{{TI}}{{HI}} \\ $$$$\:\:\kappa=\mathrm{1}−\rho\left({n}−\mathrm{1}\right)=\mathrm{1}−\frac{\left({n}−\mathrm{1}\right)}{{n}}=\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:=\frac{{ET}}{{EF}}\:\:. \\ $$$${Area}\left(\Delta{TIP}\right)=\left({IP}×{IT}\right)/\mathrm{2} \\ $$$$\:\:\:=\frac{\lambda\left({IG}\right)×\left(−\rho\right)\left({HI}\right)}{\mathrm{2}} \\ $$$$\:\:\:=\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\left(\frac{{n}−\mathrm{2}}{\mathrm{2}{n}−\mathrm{3}}\right)\left[\left({n}−\mathrm{2}\right)\boldsymbol{{a}}−\boldsymbol{{c}}\right]×\left[−\left({n}−\mathrm{1}\right)\boldsymbol{{c}}−\boldsymbol{{a}}\right] \\ $$$$\:\:=\frac{\left({n}−\mathrm{2}\right)}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{3}\right)}\left[\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)+\mathrm{1}\right]\left(\boldsymbol{{c}}×\boldsymbol{{a}}\right) \\ $$$$\:\:=\frac{\left({n}−\mathrm{2}\right)\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)}{{n}\left(\mathrm{2}{n}−\mathrm{3}\right)}\:\boldsymbol{{t}}_{\mathrm{0}} \\ $$$${Area}\left(\Delta{IGH}\right)=\frac{{IG}×{IH}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\left[\left({n}−\mathrm{2}\right)\boldsymbol{{a}}−\boldsymbol{{c}}\right]×\left[−\boldsymbol{{a}}−\left({n}−\mathrm{1}\right)\boldsymbol{{c}}\right]}{\mathrm{2}} \\ $$$$\:\:\:=\frac{\left[\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)+\mathrm{1}\right]}{\mathrm{2}}\left(\boldsymbol{{c}}×\boldsymbol{{a}}\right) \\ $$$$\:\:\:=\:\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)\boldsymbol{{t}}_{\mathrm{0}} \:. \\ $$$${Area}\left({considered}\:{hexagon}\right) \\ $$$$\:\:\:\:=\:{Area}\left(\Delta{IGH}\right)−\mathrm{3}{Area}\left(\Delta{TIP}\right) \\ $$$$\:\:\:\:=\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)\boldsymbol{{t}}_{\mathrm{0}} −\frac{\mathrm{3}\left({n}−\mathrm{2}\right)\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)\boldsymbol{{t}}_{\mathrm{0}} }{{n}\left(\mathrm{2}{n}−\mathrm{3}\right)} \\ $$$$\:\:\:\:=\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)\left[\mathrm{1}−\frac{\mathrm{3}\left({n}−\mathrm{2}\right)}{{n}\left(\mathrm{2}{n}−\mathrm{3}\right)}\right]\boldsymbol{{t}}_{\mathrm{0}} \\ $$$$\:\:\:=\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)\frac{\left(\mathrm{2}{n}^{\mathrm{2}} −\mathrm{6}{n}+\mathrm{6}\right)}{{n}\left(\mathrm{2}{n}−\mathrm{3}\right)}\boldsymbol{{t}}_{\mathrm{0}} \\ $$$$\:\:\:=\:\frac{\mathrm{2}\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)^{\mathrm{2}} }{{n}\left(\mathrm{2}{n}−\mathrm{3}\right)}\:\boldsymbol{{t}}_{\mathrm{0}} \:\:. \\ $$$${Area}\left(\Delta{ABC}\right)=\frac{{n}\boldsymbol{{c}}×{n}\boldsymbol{{a}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\left(\boldsymbol{{c}}×\boldsymbol{{a}}\right)=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\boldsymbol{{t}}_{\mathrm{0}} \right)={n}^{\mathrm{2}} \boldsymbol{{t}}_{\mathrm{0}} \\ $$$$\frac{{Area}\left({hexagon}\right)}{{Area}\left(\Delta{ABC}\right)}=\frac{\mathrm{2}\left({n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{3}\right)^{\mathrm{2}} }{{n}^{\mathrm{3}} \left(\mathrm{2}{n}−\mathrm{3}\right)}\:. \\ $$

Commented by mrW1 last updated on 09/Jun/17

Very beautiful work sir! congratulation!  Since you have the points T and P,   I have expected, that you will calculate  the area of hexagon directly in this way:  A_(Hexagon) =6×A_(ΔOTP)   Can you check if this will get the same  result, but the process will be shorter.

$$\mathrm{Very}\:\mathrm{beautiful}\:\mathrm{work}\:\mathrm{sir}!\:\mathrm{congratulation}! \\ $$$$\mathrm{Since}\:\mathrm{you}\:\mathrm{have}\:\mathrm{the}\:\mathrm{points}\:\mathrm{T}\:\mathrm{and}\:\mathrm{P},\: \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{expected},\:\mathrm{that}\:\mathrm{you}\:\mathrm{will}\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{hexagon}\:\mathrm{directly}\:\mathrm{in}\:\mathrm{this}\:\mathrm{way}: \\ $$$$\mathrm{A}_{\mathrm{Hexagon}} =\mathrm{6}×\mathrm{A}_{\Delta\mathrm{OTP}} \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{check}\:\mathrm{if}\:\mathrm{this}\:\mathrm{will}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{result},\:\mathrm{but}\:\mathrm{the}\:\mathrm{process}\:\mathrm{will}\:\mathrm{be}\:\mathrm{shorter}. \\ $$

Commented by ajfour last updated on 09/Jun/17

yes Sir, completely true.  I checked it through, seems tedious  again but they factorize out.  Thanks for the genuine suggestion.

$${yes}\:{Sir},\:{completely}\:{true}. \\ $$$${I}\:{checked}\:{it}\:{through},\:{seems}\:{tedious} \\ $$$${again}\:{but}\:{they}\:{factorize}\:{out}. \\ $$$${Thanks}\:{for}\:{the}\:{genuine}\:{suggestion}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com