Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152946 by john_santu last updated on 03/Sep/21

   ((4038)/(1+(1/3)+(1/6)+(1/(10))+(1/(15))+...+(1/(1+2+3+4+...+2019)))) =?

40381+13+16+110+115+...+11+2+3+4+...+2019=?

Commented by mathdanisur last updated on 03/Sep/21

▲ ((2∙2019)/(1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + 3 + ... + 2019))))  A = 1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + ... + 2019))  A = 1 + (2/(2∙3)) + (2/(3∙4)) + ... + (2/(2019∙2020))  (A/2) = (1/2) + (1/(2∙3)) + (1/(3∙4)) + ... + (1/(2019∙2020))  (A/2) = (1/2) + ((3 - 2)/(2∙3)) + ((4 - 3)/(3∙4)) + ... + ((2020 - 2019)/(2019∙2020))  (A/2) = (1/2) + (1/2) - (1/3) + (1/3) - (1/4) + ... + (1/(2019)) - (1/(2020))  (A/2) = 1 - (1/(2020))   ⇒  A = ((2∙2019)/(2020))  ⇒ (((2∙2019)/(2∙2019))/(2020)) = 2020

220191+11+2+11+2+3+...+11+2+3+...+2019A=1+11+2+11+2+3+...+11+2+...+2019A=1+223+234+...+220192020A2=12+123+134+...+120192020A2=12+3223+4334+...+2020201920192020A2=12+1213+1314+...+1201912020A2=112020A=22019202022019220192020=2020

Terms of Service

Privacy Policy

Contact: info@tinkutara.com