All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173424 by mnjuly1970 last updated on 11/Jul/22
provethat∫0∞sin(x)sinh(x)dx=π2tanh(π2)
Answered by Mathspace last updated on 11/Jul/22
Ψ=∫0∞sinxsh(x)dx=2∫0∞sinxex−e−xdx=2∫0∞e−xsinx1−e−2xdx=2∫0∞e−xsinx∑n=0∞e−2nxdx=2∑n=0∞∫0∞e−(2n+1)xsinxdxbut∫0∞e−(2n+1)xsinxdx=Im(∫0∞e−(n+1)x+ixdx)and∫0∞e−(n+1)+i)xdx=1−(n+1)+ie−(n+1)+i)x]0∞=1n+1−i=n+1+i(n+1)2+1⇒Im(∫0∞....)=1(n+1)2+1⇒Ψ=2∑n=0∞1(n+1)2+1=2∑n=1∞1n2+1∑n=0∞1n2+1=∑n=0∞1(n+i)(n−i)=Ψ(i)−Ψ(−i)2iafterweuseΨ(z)−Ψ(1−z)=πcotan(πz)orwecandeveloppcos(αx)atfourierserietofindthevalue...
Commented by mnjuly1970 last updated on 11/Jul/22
gratefulsir
Commented by Tawa11 last updated on 13/Jul/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com