Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153114 by peter frank last updated on 04/Sep/21

∫_0 ^1 ((log (1+x))/(1+x^2 ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\:\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Answered by puissant last updated on 04/Sep/21

x=tan(u) → dx=1+tan^2 udu  I=∫_0 ^(π/4) ((ln(1+tan(u)))/(1+tan^2 u))(1+tan^2 u)du  =∫_0 ^(π/4) ln(1+tan(u))du  u=(π/4)−t → du=−dt  I=∫_(π/4) ^0 ln(1+tan((π/4)−t))(−dt)  =∫_0 ^(π/4) ln(1+((1−tan(t))/(1+tan(t))))dt  ⇒ I=∫_0 ^(π/4) ln2dt−∫_0 ^(π/4) ln(1+tan(t))dt  ⇒ 2I=(π/4)ln2    ∴∵  I=(π/8)ln2..

$${x}={tan}\left({u}\right)\:\rightarrow\:{dx}=\mathrm{1}+{tan}^{\mathrm{2}} {udu} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tan}\left({u}\right)\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {u}}\left(\mathrm{1}+{tan}^{\mathrm{2}} {u}\right){du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tan}\left({u}\right)\right){du} \\ $$$${u}=\frac{\pi}{\mathrm{4}}−{t}\:\rightarrow\:{du}=−{dt} \\ $$$${I}=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {ln}\left(\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right)\left(−{dt}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}−{tan}\left({t}\right)}{\mathrm{1}+{tan}\left({t}\right)}\right){dt} \\ $$$$\Rightarrow\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}{dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tan}\left({t}\right)\right){dt} \\ $$$$\Rightarrow\:\mathrm{2}{I}=\frac{\pi}{\mathrm{4}}{ln}\mathrm{2} \\ $$$$ \\ $$$$\therefore\because\:\:{I}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}.. \\ $$

Commented by peter frank last updated on 04/Sep/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Ar Brandon last updated on 04/Sep/21

I=∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx, x=tanϑ    =∫_0 ^(π/4) ln(1+tanϑ)dϑ    =∫_0 ^(π/4) ln(cosϑ+sinϑ)dϑ−∫_0 ^(π/4) ln(cosϑ)dϑ    =(1/2)(G−((πln2)/4))−((G/2)−((πln2)/4))=((πln2)/8)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx},\:{x}=\mathrm{tan}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\vartheta\right)\mathrm{d}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta+\mathrm{sin}\vartheta\right){d}\vartheta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left({G}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)−\left(\frac{{G}}{\mathrm{2}}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)=\frac{\pi\mathrm{ln2}}{\mathrm{8}} \\ $$

Commented by peter frank last updated on 05/Sep/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com