Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153151 by puissant last updated on 05/Sep/21

∫_0 ^1 ((ln(x^3 +1))/(x+1))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$

Answered by Ar Brandon last updated on 05/Sep/21

I=∫_0 ^1 ((ln(x^3 +1))/(x+1))dx=∫_0 ^1 Σ_(n≥1) (((−1)^(n+1) )/n)∙(x^(3n) /(1+x))dx    =Σ_(n≥1) (((−1)^(n+1) )/n)∫_0 ^1 ((x^(3n) −x^(3n+1) )/(1−x^2 ))dx, x=u^(1/2) ⇒dx=(1/2)u^(−(1/2)) du    =Σ_(n≥1) (((−1)^(n+1) )/(2n))∫_0 ^1 ((u^((3n−1)/2) −u^((3n)/2) )/(1−u))du=Σ_(n≥1) (((−1)^(n+1) )/(2n))(ψ(((3n)/2)+1)−ψ(((3n+1)/2)))

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}\centerdot\frac{{x}^{\mathrm{3}{n}} }{\mathrm{1}+{x}}{dx} \\ $$$$\:\:=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}{n}} −{x}^{\mathrm{3}{n}+\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx},\:{x}={u}^{\frac{\mathrm{1}}{\mathrm{2}}} \Rightarrow{dx}=\frac{\mathrm{1}}{\mathrm{2}}{u}^{−\frac{\mathrm{1}}{\mathrm{2}}} {du} \\ $$$$\:\:=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{2}}} −{u}^{\frac{\mathrm{3}{n}}{\mathrm{2}}} }{\mathrm{1}−{u}}{du}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}}\left(\psi\left(\frac{\mathrm{3}{n}}{\mathrm{2}}+\mathrm{1}\right)−\psi\left(\frac{\mathrm{3}{n}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Commented by puissant last updated on 05/Sep/21

parfait..

$${parfait}.. \\ $$

Answered by mindispower last updated on 05/Sep/21

=ln(x^3 +1)=ln((x+1)(x^2 −x+1))  =(1/2)ln^2 (2)+∫_0 ^1 ((ln(x^2 −x+1))/(x+1))dx  =((ln^2 (2))/2)−∫_0 ^1 ((ln(1+x))/(x^2 −x+1))  =((ln^2 (2))/2)−∫_0 ^1 (((2x−1)ln(1+x))/((x−j)(x−j^− )))dx  ((2x−1)/((x−j)(x−j^− )))=((2j+1)/(j−j^− )).(1/(x−j))+((2j^− −1)/(j^− −j)).(1/(x−j^− ))  =∫_0 ^1 ((ln(1+x))/(x+a))dx  x+a=u  =∫_a ^(a+1) ((ln(1−a+u)))/u)du  u=(a−1)t,∀a#1  =∫_(−(a/(1−a))) ^(−((a+1)/(1−a))) ((ln(1−a)+ln(1−t))/t)dt  =ln(1−a)(ln(((a+1)/(a−1)))−ln((a/(a−1)))),∀a∈C−(1,−1,0)  −∫_(1+(2/(a−1))) ^(1+(1/(a−1))) ((ln(1−t))/t)dt=Li_2 (1+(1/(a−1)))−Li_2 (1+(2/(a−1)))′∀((1/(a−1))&(2/(a−1)))∈C−[1,+∞[  replac a by j and j^−  we get close form

$$={ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)={ln}\left(\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$$$=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$$=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{2}{x}−\mathrm{1}\right){ln}\left(\mathrm{1}+{x}\right)}{\left({x}−{j}\right)\left({x}−\overset{−} {{j}}\right)}{dx} \\ $$$$\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}−\boldsymbol{{j}}\right)\left(\boldsymbol{{x}}−\overset{−} {\boldsymbol{{j}}}\right)}=\frac{\mathrm{2}\boldsymbol{{j}}+\mathrm{1}}{{j}−\overset{−} {{j}}}.\frac{\mathrm{1}}{\boldsymbol{{x}}−\boldsymbol{{j}}}+\frac{\mathrm{2}\overset{−} {\boldsymbol{{j}}}−\mathrm{1}}{\overset{−} {{j}}−{j}}.\frac{\mathrm{1}}{\boldsymbol{{x}}−\overset{−} {\boldsymbol{{j}}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}+{a}}{dx} \\ $$$${x}+{a}={u} \\ $$$$=\int_{{a}} ^{{a}+\mathrm{1}} \frac{\left.{ln}\left(\mathrm{1}−{a}+{u}\right)\right)}{{u}}{du} \\ $$$${u}=\left({a}−\mathrm{1}\right){t},\forall{a}#\mathrm{1} \\ $$$$=\int_{−\frac{{a}}{\mathrm{1}−{a}}} ^{−\frac{{a}+\mathrm{1}}{\mathrm{1}−{a}}} \frac{{ln}\left(\mathrm{1}−{a}\right)+{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$={ln}\left(\mathrm{1}−{a}\right)\left({ln}\left(\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}\right)−{ln}\left(\frac{{a}}{{a}−\mathrm{1}}\right)\right),\forall{a}\in{C}−\left(\mathrm{1},−\mathrm{1},\mathrm{0}\right) \\ $$$$−\int_{\mathrm{1}+\frac{\mathrm{2}}{{a}−\mathrm{1}}} ^{\mathrm{1}+\frac{\mathrm{1}}{{a}−\mathrm{1}}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}={Li}_{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{a}−\mathrm{1}}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{2}}{{a}−\mathrm{1}}\right)'\forall\left(\frac{\mathrm{1}}{{a}−\mathrm{1}}\&\frac{\mathrm{2}}{{a}−\mathrm{1}}\right)\in{C}−\left[\mathrm{1},+\infty\left[\right.\right. \\ $$$${replac}\:{a}\:{by}\:{j}\:{and}\:\overset{−} {{j}}\:{we}\:{get}\:{close}\:{form} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by puissant last updated on 05/Sep/21

Sir mindispower, you are a boss !!

$${Sir}\:{mindispower},\:{you}\:{are}\:{a}\:{boss}\:!! \\ $$

Commented by mindispower last updated on 07/Sep/21

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com