Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153412 by mathdanisur last updated on 07/Sep/21

If   a;b;c;d∈(0;∞)  prove that:  (a^3 /(bc)) + (b^3 /(cd)) + (c^3 /da) + (d^3 /(ab)) ≥ a + b + c + d

$$\mathrm{If}\:\:\:\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d}\in\left(\mathrm{0};\infty\right)\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{bc}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{cd}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{da}}\:+\:\frac{\mathrm{d}^{\mathrm{3}} }{\mathrm{ab}}\:\geqslant\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d} \\ $$

Answered by puissant last updated on 07/Sep/21

a≥b≥c≥d ⇒ a^3 ≥b^3 ≥c^3 ≥d^3   and then,  (1/(bc))≥(1/(cd))≥(1/da)≥(1/(ab))  using rearrangement inequality, we get:  f(a,b,c,d)=(a^3 /(bc))+(b^3 /(cd))+(c^3 /da)+(d^3 /(ab))≥(a^2 /d)+(b^2 /a)+(c^2 /b)+(d^2 /c)  ⇒ f(a,b,c,d)≥a^2 ×(1/d)+b^2 ×(1/a)+c^2 ×(1/b)+d^2 ×(1/c).  We have,  a≥b≥c≥d ⇒ (1/d)≥(1/a) ⇒  (a^2 /d)≥a  b≥c ⇒ (1/c)≥(1/b) ⇒ (b^2 /c)+(c^2 /b)≥(b^2 /b)+(c^2 /c)=b+c  c≥d ⇒ (1/d)≥(1/c) ⇒ (c^2 /d)+(d^2 /c)≥(c^2 /c)+(d^2 /d)=c+d  Hence,    ∴∵ (a^3 /(bc))+(b^3 /(cd))+(c^3 /da)+(d^3 /(ab))≥a+b+c+d.

$${a}\geqslant{b}\geqslant{c}\geqslant{d}\:\Rightarrow\:{a}^{\mathrm{3}} \geqslant{b}^{\mathrm{3}} \geqslant{c}^{\mathrm{3}} \geqslant{d}^{\mathrm{3}} \\ $$$${and}\:{then},\:\:\frac{\mathrm{1}}{{bc}}\geqslant\frac{\mathrm{1}}{{cd}}\geqslant\frac{\mathrm{1}}{{da}}\geqslant\frac{\mathrm{1}}{{ab}} \\ $$$${using}\:{rearrangement}\:{inequality},\:{we}\:{get}: \\ $$$${f}\left({a},{b},{c},{d}\right)=\frac{{a}^{\mathrm{3}} }{{bc}}+\frac{{b}^{\mathrm{3}} }{{cd}}+\frac{{c}^{\mathrm{3}} }{{da}}+\frac{{d}^{\mathrm{3}} }{{ab}}\geqslant\frac{{a}^{\mathrm{2}} }{{d}}+\frac{{b}^{\mathrm{2}} }{{a}}+\frac{{c}^{\mathrm{2}} }{{b}}+\frac{{d}^{\mathrm{2}} }{{c}} \\ $$$$\Rightarrow\:{f}\left({a},{b},{c},{d}\right)\geqslant{a}^{\mathrm{2}} ×\frac{\mathrm{1}}{{d}}+{b}^{\mathrm{2}} ×\frac{\mathrm{1}}{{a}}+{c}^{\mathrm{2}} ×\frac{\mathrm{1}}{{b}}+{d}^{\mathrm{2}} ×\frac{\mathrm{1}}{{c}}. \\ $$$${We}\:{have}, \\ $$$${a}\geqslant{b}\geqslant{c}\geqslant{d}\:\Rightarrow\:\frac{\mathrm{1}}{{d}}\geqslant\frac{\mathrm{1}}{{a}}\:\Rightarrow\:\:\frac{{a}^{\mathrm{2}} }{{d}}\geqslant{a} \\ $$$${b}\geqslant{c}\:\Rightarrow\:\frac{\mathrm{1}}{{c}}\geqslant\frac{\mathrm{1}}{{b}}\:\Rightarrow\:\frac{{b}^{\mathrm{2}} }{{c}}+\frac{{c}^{\mathrm{2}} }{{b}}\geqslant\frac{{b}^{\mathrm{2}} }{{b}}+\frac{{c}^{\mathrm{2}} }{{c}}={b}+{c} \\ $$$${c}\geqslant{d}\:\Rightarrow\:\frac{\mathrm{1}}{{d}}\geqslant\frac{\mathrm{1}}{{c}}\:\Rightarrow\:\frac{{c}^{\mathrm{2}} }{{d}}+\frac{{d}^{\mathrm{2}} }{{c}}\geqslant\frac{{c}^{\mathrm{2}} }{{c}}+\frac{{d}^{\mathrm{2}} }{{d}}={c}+{d} \\ $$$${Hence},\:\: \\ $$$$\therefore\because\:\frac{{a}^{\mathrm{3}} }{{bc}}+\frac{{b}^{\mathrm{3}} }{{cd}}+\frac{{c}^{\mathrm{3}} }{{da}}+\frac{{d}^{\mathrm{3}} }{{ab}}\geqslant{a}+{b}+{c}+{d}. \\ $$

Commented by mathdanisur last updated on 07/Sep/21

ThankYou Ser

$$\mathrm{ThankYou}\:\mathrm{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com