Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153721 by mnjuly1970 last updated on 09/Sep/21

       prove  that :                  I:= ∫_0 ^( ∞) (( x^( 3) )/(sinh ( x ))) dx = ((π^4 )/8)          ■ m.n

$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}^{\:\mathrm{3}} }{{sinh}\:\left(\:{x}\:\right)}\:{dx}\:=\:\frac{\pi\:^{\mathrm{4}} }{\mathrm{8}}\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 09/Sep/21

I=∫_0 ^∞   (x^3 /(sh(x)))dx ⇒I=∫_0 ^∞  ((2x^3 )/(e^x −e^(−x) ))dx=2∫_0 ^∞ ((x^3  e^(−x) )/(1−e^(−2x) ))dx  =2∫_0 ^∞ x^(3 ) e^(−x) (Σ_(n=0) ^∞  e^(−2nx) )dx =2Σ_(n=0) ^∞  ∫_0 ^∞  x^(3 ) e^(−(2n+1)x)  dx  =_((2n+1)x=t)     2Σ_(n=0) ^(∞ ) ∫_0 ^∞ (t^3 /((2n+1)^3 ))e^(−t ) (dt/((2n+1)))  =2Σ_(n=0) ^(∞ )  (1/((2n+1)^4 ))∫_0 ^∞  t^(3 ) e^(−t)  dt =2Γ(4)Σ_(n=0) ^∞  (1/((2n+1)^4 ))  Γ(4)=3!=6  Σ_(n=1) ^(∞ )  (1/n^4 )=(π^4 /(90))=(1/2^4 )Σ_(n=1) ^∞  (1/n^4 )+Σ_(n=0) ^∞  (1/((2n+1)^4 )) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^4 ))=(1−(1/2^4 ))×(π^4 /(90))=((15)/(16))×(π^4 /(90)) =((3.5π^4 )/(16.3.30))=((5π^4 )/(16.6.5))=(π^4 /(96)) ⇒  I=12×(π^4 /(96))=(π^4 /8)

$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{sh}\left(\mathrm{x}\right)}\mathrm{dx}\:\Rightarrow\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2x}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }\mathrm{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2x}} }\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\mathrm{3}\:} \mathrm{e}^{−\mathrm{x}} \left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{2nx}} \right)\mathrm{dx}\:=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{3}\:} \mathrm{e}^{−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{x}} \:\mathrm{dx} \\ $$$$=_{\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{x}=\mathrm{t}} \:\:\:\:\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty\:} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{3}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{e}^{−\mathrm{t}\:} \frac{\mathrm{dt}}{\left(\mathrm{2n}+\mathrm{1}\right)} \\ $$$$=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty\:} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}\:} \mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\mathrm{2}\Gamma\left(\mathrm{4}\right)\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\Gamma\left(\mathrm{4}\right)=\mathrm{3}!=\mathrm{6} \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty\:} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} }+\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} }\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} }=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\right)×\frac{\pi^{\mathrm{4}} }{\mathrm{90}}=\frac{\mathrm{15}}{\mathrm{16}}×\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:=\frac{\mathrm{3}.\mathrm{5}\pi^{\mathrm{4}} }{\mathrm{16}.\mathrm{3}.\mathrm{30}}=\frac{\mathrm{5}\pi^{\mathrm{4}} }{\mathrm{16}.\mathrm{6}.\mathrm{5}}=\frac{\pi^{\mathrm{4}} }{\mathrm{96}}\:\Rightarrow \\ $$$$\mathrm{I}=\mathrm{12}×\frac{\pi^{\mathrm{4}} }{\mathrm{96}}=\frac{\pi^{\mathrm{4}} }{\mathrm{8}} \\ $$

Commented by mnjuly1970 last updated on 09/Sep/21

thx sir max

$${thx}\:{sir}\:{max} \\ $$

Answered by Jonathanwaweh last updated on 09/Sep/21

please sir (1/(1−e^(−2x) ))≠Σ_(n=0) ^∞ e^(−2nx)   because when x→0 e^(−2x) =1≠0

$${please}\:{sir}\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}{x}} }\neq\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}{nx}} \:\:{because}\:{when}\:{x}\rightarrow\mathrm{0}\:{e}^{−\mathrm{2}{x}} =\mathrm{1}\neq\mathrm{0} \\ $$

Commented by Mathspace last updated on 09/Sep/21

look sir  ∣e^(−2x) ∣<1 and use   equality (1/(1−u))=Σu^n     ∣u∣<1

$${look}\:{sir}\:\:\mid{e}^{−\mathrm{2}{x}} \mid<\mathrm{1}\:{and}\:{use}\: \\ $$$${equality}\:\frac{\mathrm{1}}{\mathrm{1}−{u}}=\Sigma{u}^{{n}} \:\:\:\:\mid{u}\mid<\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com