All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 153758 by yeti123 last updated on 10/Sep/21
S=∑nk=1sin(θk)∑nk=1cos(θk);where(θk)k=1nisanarithmeticprogression.showthatS=tan(θ¯)whereθ¯=1n∑nk=1θkisthearithmeticmeanof(θk)
Answered by mindispower last updated on 10/Sep/21
θk=ak+b∑nk=1eiθk=eib.eia1−(eia)n1−eia=S=ei(a+b).ei(na2−a2)cos(na2)cos(a2)=ei(a2(n+1)+b)cos(na2)cos(a2)nΣsin(θk)=cos(na2)cos(a2)sin(1n(n(n+1)a2+bn))Σcos(θk)=cos(na2)cos(a2)cos((1n(n(n+1)a2+bn))Σθk=∑nk=1(ak+b)=nb+a2(n(n+1)Σsin(θk)Σcos(θk)=cos(na2))cos(a2)sin(1n(n(n+1)a2+nb))cos(na2)cos(a2)cos(1n((n+12)na+nb)=tg(1n(Σθk))=tg(θ−k)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com