Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153803 by weltr last updated on 10/Sep/21

solve for x  cos^2 x − cos^2 2x = cos^2 4x − cos^2 3x

solveforxcos2xcos22x=cos24xcos23x

Commented by Ar Brandon last updated on 10/Sep/21

x=0[π] is a solution

x=0[π]isasolution

Answered by puissant last updated on 10/Sep/21

⇒ 1+cos2x−1−cos4x=1+cos8x−1−cos6x  ⇒ cos2x−cos4x+cos6x−cos8x=0  ⇒ (cos2x+cos6x)−(cos4x+cos8x)=0  ⇒ 2cos2xcos4x−2cos2xcos6x=0  ⇒cos2x(cos4x−cos6x)=0  cos2x=0 or cos4x−cos6x=0  → cos2x=0 ⇒ 2x=(π/2)+kπ , k∈Z  ⇒ x=(π/4)+((kπ)/2) , k∈Z..  → cos4x−cos6x=0  ⇒ −2sin(((4x−6x)/2))sin(((4x+6x)/2))=0  ⇒ 2sinxsin5x=0  ⇒ sinx=0 or sin5x=0  ⇒ x=kπ  or  x=((kπ)/5) ,  k∈Z..    ∴∵ {x=(π/4)+((kπ)/2) or x=kπ or x=((kπ)/5) ; k∈Z}..

1+cos2x1cos4x=1+cos8x1cos6xcos2xcos4x+cos6xcos8x=0(cos2x+cos6x)(cos4x+cos8x)=02cos2xcos4x2cos2xcos6x=0cos2x(cos4xcos6x)=0cos2x=0orcos4xcos6x=0cos2x=02x=π2+kπ,kZx=π4+kπ2,kZ..cos4xcos6x=02sin(4x6x2)sin(4x+6x2)=02sinxsin5x=0sinx=0orsin5x=0x=kπorx=kπ5,kZ..∴∵{x=π4+kπ2orx=kπorx=kπ5;kZ}..

Commented by weltr last updated on 10/Sep/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com