All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 153896 by SANOGO last updated on 11/Sep/21
Answered by ARUNG_Brandon_MBU last updated on 12/Sep/21
Ω=∫1∞lnx(1+x)(1+x2)dx,x=1u⇒dx=−1u2du=−∫01ulnu(u+1)(u2+1)duu(u+1)(u2+1)=au+1+bu+cu2+1=a(u2+1)+(bu+c)(u+1)(u+1)(u2+1){a+b=0b+c=1a+c=0⇒a=−12,b=12,c=12Ω=12∫01(1u+1−uu2+1−1u2+1)lnudu=12[∫01lnuu+1du−14∫01lnvv+1dv−14∫01v−12lnvv+1dv]=12∫01(1−u)lnu1−u2du−18∫01(1−v)lnv1−v2dv−18∫01v−12(1−v)lnv1−v2dv=18∫01(t−12−1)lnt1−tdt−132∫01(t−12−1)lnt1−tdt−132∫01(t−14−t14)lnt1−tdt=18(ψ′(1)−ψ′(12))−132(ψ′(1)−ψ′(12))−132(ψ′(54)−ψ′(34))=18(ζ(2)−3ζ(2))−132(ζ(2)−3ζ(2))−132(ψ′(14)−ψ′(34)−16)=−316ζ(2)−132(2ψ′(14)−π2cosec2(π4))+12
Commented by SANOGO last updated on 12/Sep/21
mercibienlecerveau
Terms of Service
Privacy Policy
Contact: info@tinkutara.com