Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153896 by SANOGO last updated on 11/Sep/21

Answered by ARUNG_Brandon_MBU last updated on 12/Sep/21

Ω=∫_1 ^∞ ((lnx)/((1+x)(1+x^2 )))dx, x=(1/u)⇒dx=−(1/u^2 )du      =−∫_0 ^1 ((ulnu)/((u+1)(u^2 +1)))du  (u/((u+1)(u^2 +1)))=(a/(u+1))+((bu+c)/(u^2 +1))=((a(u^2 +1)+(bu+c)(u+1))/((u+1)(u^2 +1)))   { ((a+b=0)),((b+c=1)),((a+c=0)) :}⇒a=−(1/2), b=(1/2), c=(1/2)  Ω=(1/2)∫_0 ^1 ((1/(u+1))−(u/(u^2 +1))−(1/(u^2 +1)))lnudu      =(1/2)[∫_0 ^1 ((lnu)/(u+1))du−(1/4)∫_0 ^1 ((lnv)/(v+1))dv−(1/4)∫_0 ^1 ((v^(−(1/2)) lnv)/(v+1))dv]      =(1/2)∫_0 ^1 (((1−u)lnu)/(1−u^2 ))du−(1/8)∫_0 ^1 (((1−v)lnv)/(1−v^2 ))dv−(1/8)∫_0 ^1 ((v^(−(1/2)) (1−v)lnv)/(1−v^2 ))dv      =(1/8)∫_0 ^1 (((t^(−(1/2)) −1)lnt)/(1−t))dt−(1/(32))∫_0 ^1 (((t^(−(1/2)) −1)lnt)/(1−t))dt−(1/(32))∫_0 ^1 (((t^(−(1/4)) −t^(1/4) )lnt)/(1−t))dt      =(1/8)(ψ′(1)−ψ′((1/2)))−(1/(32))(ψ′(1)−ψ′((1/2)))−(1/(32))(ψ′((5/4))−ψ′((3/4)))      =(1/8)(ζ(2)−3ζ(2))−(1/(32))(ζ(2)−3ζ(2))−(1/(32))(ψ′((1/4))−ψ′((3/4))−16)      =−(3/(16))ζ(2)−(1/(32))(2ψ′((1/4))−π^2 cosec^2 ((π/4)))+(1/2)

Ω=1lnx(1+x)(1+x2)dx,x=1udx=1u2du=01ulnu(u+1)(u2+1)duu(u+1)(u2+1)=au+1+bu+cu2+1=a(u2+1)+(bu+c)(u+1)(u+1)(u2+1){a+b=0b+c=1a+c=0a=12,b=12,c=12Ω=1201(1u+1uu2+11u2+1)lnudu=12[01lnuu+1du1401lnvv+1dv1401v12lnvv+1dv]=1201(1u)lnu1u2du1801(1v)lnv1v2dv1801v12(1v)lnv1v2dv=1801(t121)lnt1tdt13201(t121)lnt1tdt13201(t14t14)lnt1tdt=18(ψ(1)ψ(12))132(ψ(1)ψ(12))132(ψ(54)ψ(34))=18(ζ(2)3ζ(2))132(ζ(2)3ζ(2))132(ψ(14)ψ(34)16)=316ζ(2)132(2ψ(14)π2cosec2(π4))+12

Commented by SANOGO last updated on 12/Sep/21

merci bien le cerveau

mercibienlecerveau

Terms of Service

Privacy Policy

Contact: info@tinkutara.com