All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 1540 by Rasheed Soomro last updated on 17/Aug/15
Determinethreecomplexnumbersα,β,γsuchthatα=β2butβ≠α2β=γ2butγ≠β2γ=α2butα≠γ2
Answered by 123456 last updated on 17/Aug/15
{α=β2∧β≠α2β=γ2∧γ≠β2γ=α2∧α≠γ2≡{α=β2∧β≠γβ=γ2∧γ≠αγ=α2∧α≠βα=β2=(γ2)2=[(α2)2]2=α2×2×2=α8α8−α=0α(α7−1)=0α=0∨α7=1α=0⇒γ=0⇒γ2=αα=e2π7kı,k∈Z7γ=α2=e4π7kıβ=γ2=e8π7kı(α,β,γ)=(e2π7kı,e8π7kı,e4π7kι)β≠α2⇒e8π7kı≠e4π7kı(k≠0)γ≠β2⇒e4π7kı≠e16π7kı=e2π7kı(k≠0)α≠γ2⇒e2π7kı≠e8π7kı(k≠0)(α,β,γ)=(e2π7kı,e8π7kı,e4π7kı),k∈Z7∖{0}
Commented by 123456 last updated on 17/Aug/15
(ω,ω4,ω2)(ω2,ω,ω4)(ω3,ω5,ω6)(ω4,ω2,ω)(ω5,ω6,ω3)(ω6,ω3,ω5)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com