Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154223 by mnjuly1970 last updated on 15/Sep/21

     ∫_0 ^( 1) (x^( i+1) /(1−x)) dx = [−ln(1−x)x^( i+1) ]_0 ^( 1)      + (1+i)∫_0 ^( 1) x^( i)  ln (1−x )dx     = (1+i ) ∫_0 ^( 1) Σ_(n=1) ^∞ (x^( n+i) /n)dx   =  (1+i )Σ(1/(n (n+i+1 )))=   = Σ(1/(n )) −(1/(n+i+1)) = γ + ψ ( i+2 )     = γ + (1/(1+i)) +ψ (1+i)       γ + ((1−i)/2) + (1/i) + ψ (i )     im = −(3/2) + (1/2) +(π/2) coth(π )                −1 +(π/2) tan h(π ) ..✓

01xi+11xdx=[ln(1x)xi+1]01+(1+i)01xiln(1x)dx=(1+i)01n=1xn+indx=(1+i)Σ1n(n+i+1)==Σ1n1n+i+1=γ+ψ(i+2)=γ+11+i+ψ(1+i)γ+1i2+1i+ψ(i)im=32+12+π2coth(π)1+π2tanh(π)..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com