Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154401 by mathdanisur last updated on 18/Sep/21

prove that the sum  2+2^2 +2^3 +2^4 +...+2^(2019) +2^(2020)   is divisible  by  30

provethatthesum2+22+23+24+...+22019+22020isdivisibleby30

Answered by talminator2856791 last updated on 18/Sep/21

    2^(k+1) +2^(k+3)  = 2^k (8+2)                          = 10∙2^k       2^(k+2) +2^(k+4)  = 2^k (16+4)                          = 20∙2^k       2^(k+1) +2^(k+2) +2^(k+3) +2^(k+4)  = 30∙2^k       S = 2+2^2 +2^3 +2^4 +.....+2^(2019) +2^(2020)    = (2+2^2 +2^3 +2^4 )+(2^5 +2^6 +2^7 +2^8 )+.....   +(2^(2017) +2^(2018) +2^(2019) +2^(2020) )   = (2+2^2 +2^3 +2^4 )+2^4 (2+2^2 +2^3 +2^4 )+.....   +2^(2016) (2+2^2 +2^3 +2^4 )   = 30+2^4 ∙30+2^8 ∙30+.....+2^(2016) ∙30   = 30(1+2^4 +.....+2^(2016) )      ⇒ 30∣S

2k+1+2k+3=2k(8+2)=102k2k+2+2k+4=2k(16+4)=202k2k+1+2k+2+2k+3+2k+4=302kS=2+22+23+24+.....+22019+22020=(2+22+23+24)+(25+26+27+28)+.....+(22017+22018+22019+22020)=(2+22+23+24)+24(2+22+23+24)+.....+22016(2+22+23+24)=30+2430+2830+.....+2201630=30(1+24+.....+22016)30S

Commented by mathdanisur last updated on 18/Sep/21

Very nice Ser thanks

VeryniceSerthanks

Answered by Rasheed.Sindhi last updated on 18/Sep/21

                            MOD 30  2^4 ≡16                                 ⇒2^(4×1) ≡16  (2^4 )^2 ≡(16)^2 ⇒2^8 ≡16  ⇒2^(4×2) ≡16  (2^8 )^2 ≡(16)^2 ⇒2^(12) ≡16⇒2^(4×3) ≡16  …   …   …   …   …                                               2^(4×k) ≡16  2^(4k) .2≡16.2≡2⇒2^(4k+1) ≡2  2^(4k+1) .2≡2.2≡4⇒  2^(4k+2) ≡4  2^(4k+2) .2≡4.2≡8⇒  2^(4k+3) ≡8  2^(4k) ≡16                  ⇒  2^(4k)  ≡ 16  ▶S=2+2^2 +2^3 +2^4 +...+2^(2019) +2^(2020)   =Σ_(k=0) ^(505) (2^(4k+1) +2^(4k+2) +2^(4k+3) +2^(4k) )  ≡Σ_(k=1) ^(505) (2+4+8+16).k=Σ_(k=1) ^(505) (30k)  S=30×Σ_(k=1) ^(505) k  ∴ 30∣S

MOD30241624×116(24)2(16)2281624×216(28)2(16)22121624×31624×k1624k.216.2224k+1224k+1.22.2424k+2424k+2.24.2824k+3824k1624k16S=2+22+23+24+...+22019+22020=Σ505k=0(24k+1+24k+2+24k+3+24k)Σ505k=1(2+4+8+16).k=Σ505k=1(30k)S=30×Σ505k=1k30S

Commented by mathdanisur last updated on 18/Sep/21

Very nice Ser thankyou

VeryniceSerthankyou

Answered by JDamian last updated on 18/Sep/21

S=2((2^(2020) −1)/(2−1))=2(2^(2020) −1)  S=2^(2021) −2  S mod 30 =(2^(2021) −2) mod 30=  =2^(2021) mod 30 −2    ∣(2^5 )^k mod 30 =(30+2)^k  mod 30=  =2^k  mod 30  ∣    2^(2021) mod 30 =[2∙(2^5 )^(404) ]mod 30=  =(2∙2^(404) )mod 30=2^(405) mod 30=  =(2^5 )^(81) mod 30=2^(81) mod 30=  =2∙(2^5 )^(16) mod 30 =2^(17)  mod 30=  =2^2 (2^5 )^3 mod 30 = 2^5  mod 30 = 2    S mod 30 = 2 − 2 = 0

S=222020121=2(220201)S=220212Smod30=(220212)mod30==22021mod302(25)kmod30=(30+2)kmod30==2kmod3022021mod30=[2(25)404]mod30==(22404)mod30=2405mod30==(25)81mod30=281mod30==2(25)16mod30=217mod30==22(25)3mod30=25mod30=2Smod30=22=0

Commented by mathdanisur last updated on 18/Sep/21

Very nice Ser thankyou

VeryniceSerthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com