All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 154421 by peter frank last updated on 18/Sep/21
∫[(xe)x+(ex)x]lnxdx
Answered by puissant last updated on 18/Sep/21
Q=∫[(xe)x+(ex)x]lnxdx=∫xxlnxexdx+∫exlnxxxdxI=∫xxlnxexdx=∫exlnxe−xlnxdx=∫e(xlnx−x)lnxdxu=xlnx−x⇒du=lnxdx⇒I=∫eudu=eu+C=ex(lnx−1)+C..J=∫exlnxxxdx=∫exe−xlnxlnxdx=∫e(x−xlnx)lnxdxt=x−xlnx→dt=−lnxdx⇒J=−∫etdt=−et+C=−ex(1−lnx)+C..Q=I+J..∴∵Q=ex(lnx−1)−ex(1−lnx)+C...
Commented by peter frank last updated on 19/Sep/21
thankyou
Answered by peter frank last updated on 19/Sep/21
(xe)x=u(ex)x=1ux[lnx−lne]=lnulnxdx=1udu∫[u+1u]lnxdx=∫1+u2u.1udu∫(du+1u2du)=u−1u+C(xe)x−(ex)x+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com