Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154437 by ArielVyny last updated on 18/Sep/21

∫_0 ^(π/2) arcos(((cosx)/(1+2cosx)))dx

0π2arcos(cosx1+2cosx)dx

Answered by phanphuoc last updated on 18/Sep/21

put x=tan(t/2)

putx=tan(t/2)

Answered by Kamel last updated on 18/Sep/21

((5π^2 )/(24))

5π224

Answered by puissant last updated on 18/Sep/21

Q=∫_0 ^(π/2) arccos(((cosx)/(1+2cosx)))dx=2∫_0 ^(π/2) arccos((√((1+((cosx)/(1+2cosx)))/2)))dx  =2∫_0 ^(π/2) arctan((√((1+cosx)/(1+3cosx))))dx=4∫_0 ^(π/4) arctan((√((1+cos2u)/(1+3cos2u))))du  Diver: ′′1+cos2u=2cosu et cos2u=1−sin^2 u (Trivial)′′  ⇒ Q=4∫_0 ^(π/4) arctan((√((cos^2 u)/(1−sin^2 u))))du=4∫_0 ^(π/4) arctan(((cosu)/( (√(1−2sinu)))))du  =4∫_0 ^(π/4) ∫_0 ^1 (((√(2−3sin^2 u)) cosu)/((x^2 +2)−sin^2 u(x^2 +3)))dxdu  (√3)sinu=(√2)sinθ → cosudu=((√2)/( (√3)))cosθdθ  ⇒ Q=4∫_0 ^(π/3) ∫_0 ^1 ((2(√3) cos^2 θ)/(3x^2 +6−2(1−cos^2 θ)(x^2 +3)))dxdθ  =^(t=tanu)  8(√3)∫_0 ^(√3) ∫_0 ^1 (1/((1+t^2 )(t^2 x^2 +3x^2 +6)))dxdt  =8(√3)∫_0 ^(√3) ∫_0 ^1 (((−(1/(2x^2 +6)))/(1+t^2 ))+((x^2 /(2x^2 +6))/(t^2 x^2 +3x^2 +6)))dxdt=8(√3)∫_0 ^1 (1/(2x^2 +6))(∫_0 ^(√3) (dt/(1+t^2 ))−∫_0 ^(√3) (dt/(t^2 +3+(6/x^2 ))))dx  =((2π^2 )/9)−4[arctan((x/( (√(x^2 +2)))))arctan((√(x^2 +2)))]_0 ^1 +4∫_0 ^1 ((arctan((√(x^2 +2))))/((x^2 +1)(√(x^2 +1))))dx  =4∫_0 ^1 ((arctan((√(x^2 +2))))/((x^2 +1)(√(x^2 +1))))dx = 4×((5π^2 )/(96)) = ((5π^2 )/(24))..                                                        ∵∴     Q = ((5π^2 )/(24))...                                               ......................Le puissant......................

Q=0π2arccos(cosx1+2cosx)dx=20π2arccos(1+cosx1+2cosx2)dx=20π2arctan(1+cosx1+3cosx)dx=40π4arctan(1+cos2u1+3cos2u)duDiver:1+cos2u=2cosuetcos2u=1sin2u(Trivial)Q=40π4arctan(cos2u1sin2u)du=40π4arctan(cosu12sinu)du=40π40123sin2ucosu(x2+2)sin2u(x2+3)dxdu3sinu=2sinθcosudu=23cosθdθQ=40π30123cos2θ3x2+62(1cos2θ)(x2+3)dxdθ=t=tanu8303011(1+t2)(t2x2+3x2+6)dxdt=830301(12x2+61+t2+x22x2+6t2x2+3x2+6)dxdt=830112x2+6(03dt1+t203dtt2+3+6x2)dx=2π294[arctan(xx2+2)arctan(x2+2)]01+401arctan(x2+2)(x2+1)x2+1dx=401arctan(x2+2)(x2+1)x2+1dx=4×5π296=5π224..∵∴Q=5π224.........................Lepuissant......................

Commented by peter frank last updated on 18/Sep/21

good

good

Commented by ArielVyny last updated on 19/Sep/21

thank sir

thanksir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com