Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 154478 by mnjuly1970 last updated on 18/Sep/21

      prove that #      ∫_0 ^( ∞) (( sin^( 3) ( x ).ln( x ))/x) dx =^?  (π/8) (−2γ +ln(3)) .....■ m.n

$$ \\ $$$$ \\ $$$$\:\:{prove}\:{that}\:# \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{3}} \left(\:{x}\:\right).{ln}\left(\:{x}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi}{\mathrm{8}}\:\left(−\mathrm{2}\gamma\:+{ln}\left(\mathrm{3}\right)\right)\:.....\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\: \\ $$$$ \\ $$

Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21

   ∫_0 ^∞ ((sin^3 x∙lnx)/x)dx  2isinx=(e^(ix) −e^(−ix) )  −8isin^3 x=e^(3ix) −3e^(ix) +3e^(−ix) −e^(−3ix)   sin^3 x=(3/4)sinx−(1/4)sin3x  Ω(α)=−∫_0 ^∞ ((sin^3 x)/x^α )=(1/4)∫_0 ^∞ (((sin3x)/x^α )−((3sinx)/x^α ))dx=(1/4)[((π3^(α−1) −3π)/(2Γ(α)sin((π/2)α)))]  Ω′(α)=(1/8)[((π3^(α−1) ln3(Γ(α)sin((π/2)α))−(π3^(α−1) −3π)((π/2)cos((π/2)α)Γ(α)+sin((π/2)α)Γ′(α)))/(Γ^2 (α)sin^2 ((π/2)α)))]  Ω′(1)=∫_0 ^∞ ((sin^3 x∙lnx)/x)dx=(1/8)[((πln3+2π(Γ′(1)))/(Γ^2 (1)sin^2 ((π/2))))]=(1/8)(πln3−2πγ)=(π/8)(ln3−2γ)

$$\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}\centerdot\mathrm{ln}{x}}{{x}}{dx} \\ $$$$\mathrm{2}{i}\mathrm{sin}{x}=\left({e}^{{ix}} −{e}^{−{ix}} \right) \\ $$$$−\mathrm{8}{i}\mathrm{sin}^{\mathrm{3}} {x}={e}^{\mathrm{3}{ix}} −\mathrm{3}{e}^{{ix}} +\mathrm{3}{e}^{−{ix}} −{e}^{−\mathrm{3}{ix}} \\ $$$$\mathrm{sin}^{\mathrm{3}} {x}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}{x}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin3}{x} \\ $$$$\Omega\left(\alpha\right)=−\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}}{{x}^{\alpha} }=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{sin3}{x}}{{x}^{\alpha} }−\frac{\mathrm{3sin}{x}}{{x}^{\alpha} }\right){dx}=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\pi\mathrm{3}^{\alpha−\mathrm{1}} −\mathrm{3}\pi}{\mathrm{2}\Gamma\left(\alpha\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\alpha\right)}\right] \\ $$$$\Omega'\left(\alpha\right)=\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\pi\mathrm{3}^{\alpha−\mathrm{1}} \mathrm{ln3}\left(\Gamma\left(\alpha\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\alpha\right)\right)−\left(\pi\mathrm{3}^{\alpha−\mathrm{1}} −\mathrm{3}\pi\right)\left(\frac{\pi}{\mathrm{2}}\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}\alpha\right)\Gamma\left(\alpha\right)+\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\alpha\right)\Gamma'\left(\alpha\right)\right)}{\Gamma^{\mathrm{2}} \left(\alpha\right)\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\alpha\right)}\right] \\ $$$$\Omega'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}\centerdot\mathrm{ln}{x}}{{x}}{dx}=\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\pi\mathrm{ln3}+\mathrm{2}\pi\left(\Gamma'\left(\mathrm{1}\right)\right)}{\Gamma^{\mathrm{2}} \left(\mathrm{1}\right)\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\right)}\right]=\frac{\mathrm{1}}{\mathrm{8}}\left(\pi\mathrm{ln3}−\mathrm{2}\pi\gamma\right)=\frac{\pi}{\mathrm{8}}\left(\mathrm{ln3}−\mathrm{2}\gamma\right) \\ $$

Commented by mnjuly1970 last updated on 18/Sep/21

thank you so much sir Arung..

$${thank}\:{you}\:{so}\:{much}\:{sir}\:\mathrm{A}{rung}.. \\ $$

Commented by Ar Brandon last updated on 18/Sep/21

My pleasure, Sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com