Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 154549 by peter frank last updated on 19/Sep/21

A particle is projected  with velocity  2(√(gh))   so that  it just clears two  walls of equal heigh(h)  in the  t_1  and t_(2 )  respectively.The two  walls are at a distance of  2h  from  each other.If time passing   between the two walls is 2(√(h/g))  show that (i) angle projected 60^°                 (ii)t_1 +t_2 =2(√((3h)/g))

Aparticleisprojectedwithvelocity2ghsothatitjustclearstwowallsofequalheigh(h)inthet1andt2respectively.Thetwowallsareatadistanceof2hfromeachother.Iftimepassingbetweenthetwowallsis2hgshowthat(i)angleprojected60°(ii)t1+t2=23hg

Commented by Tawa11 last updated on 21/Sep/21

nice sir

nicesir

Answered by ARUNG_Brandon_MBU last updated on 19/Sep/21

(i)For horizontal motion between both walls;   x=v_x t. But x=2h, v_x =2(√(gh))cosϑ, t=2(√(h/g))  ⇒2h=(2(√(gh))cosϑ)(2(√(h/g)))  ⇒(1/2)=cosϑ⇒ϑ=60°

(i)Forhorizontalmotionbetweenbothwalls;x=vxt.Butx=2h,vx=2ghcosϑ,t=2hg2h=(2ghcosϑ)(2hg)12=cosϑϑ=60°

Commented by peter frank last updated on 20/Sep/21

thanks

thanks

Answered by ARUNG_Brandon_MBU last updated on 19/Sep/21

(ii) For vertical motion:  y=ut+(1/2)at^2 , y=h, u=2(√(gh))sin60°=(√(3gh)), a=−g  ⇒h=(√(3gh))t−(1/2)gt^2 ⇒gt^2 −2(√(3gh))t+h=0  t=((2(√(3gh))±(√(12gh−4gh)))/(2g))=((2(√(3gh))±2(√(2gh)))/(2g))  t_1 =(√((3h)/g))+(√((2h)/g)), t_2 =(√((3h)/g))−(√((2h)/g))  t_1 +t_2 =2(√((3h)/g))

(ii)Forverticalmotion:y=ut+12at2,y=h,u=2ghsin60°=3gh,a=gh=3ght12gt2gt223ght+h=0t=23gh±12gh4gh2g=23gh±22gh2gt1=3hg+2hg,t2=3hg2hgt1+t2=23hg

Answered by peter frank last updated on 20/Sep/21

Answered by peter frank last updated on 20/Sep/21

x−direction  x_1 =v_o cos θt_1   x_2 =v_o cos θt_2   v_o =2(√(gh))  x_2 −x_1 =2h      (t_2 −t_1 )=2(√(h/g))  v_o cos θ(t_2 −t_1 )=2h  cosθ=((2h)/(v_o (t_2 −t_1 )))  =(1/2)     θ=  cos^(−1) (1/2)=60^°   also  y−direction  y=v_o sin θt_1 −(1/2)gt_1 ^2   y=v_o sin θt_2 −(1/2)gt_2 ^2   v_o sin θt_1 −(1/2)gt_1 ^2 =v_o sin θt_2 −(1/2)gt_2 ^2   2(√(gh)) sin θ(t_2 −t_1 )=(1/2)g(t_2 ^2 −t_1 ^2 )  2(√(gh)) sin θ=(1/2)g(t_2 +t_1 )   [θ=60]  t_2 +t_1 =((4(√(gh)))/g).((√3)/2)=  t_2 +t_1 =2(√(((3h)/g) ))

xdirectionx1=vocosθt1x2=vocosθt2vo=2ghx2x1=2h(t2t1)=2hgvocosθ(t2t1)=2hcosθ=2hvo(t2t1)=12θ=cos112=60°alsoydirectiony=vosinθt112gt12y=vosinθt212gt22vosinθt112gt12=vosinθt212gt222ghsinθ(t2t1)=12g(t22t12)2ghsinθ=12g(t2+t1)[θ=60]t2+t1=4ghg.32=t2+t1=23hg

Terms of Service

Privacy Policy

Contact: info@tinkutara.com