All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 154621 by liberty last updated on 20/Sep/21
∫x2+x+1x2+xdx
Commented by mathdanisur last updated on 20/Sep/21
=∫dxx2+x+1⏟+∫dx(x2+x)x2+x+1⏟(1)⇒ln∣x+12+x2+x+1∣and(2)⇒ln∣2x2+2x−1+(2x+1)x2+x+12x2+2x+1+(2x+1)x2+x+1∣say→s=x+x2+x+1⇒dx=2(s2+s+1)(2s+1)2ds...⇒=ln∣2x2+2x−1+(2x+1)x2+x+12x2+2x+1+(2x+1)x2+x+1∣+C
Answered by ARUNG_Brandon_MBU last updated on 20/Sep/21
I=∫x2+x+1x2+xdx=∫x2+x+1(x2+x)x2+x+1dx=∫dxx2+x+1+∫dx(x2+x)x2+x+1=∫dx(x+12)2+34+∫(1x−1x+1)dxx2+x+1=argsinh(2x+13)+∫dxxx2+x+1−∫dx(x+1)x2+x+1=ln∣(2x+13)+1+(2x+13)2∣−∫uduu21u2+1u+1+∫vdvv2(1v−1)2+(1v−1)+1{u=1xv=1x+1⇒{du=−dxx2dv=−dx(x+1)2⇒{−1u2du=dx−1v2dv=dxI=ln∣(2x+13)+1+(2x+13)2∣−sgn(u)∫duu2+u+1+sgn(v)∫dvv2−v+1=ln∣(2x+13)+1+(2x+13)2∣−sgn(u)ln∣(2u+13)+1+(2u+13)2∣+sgn(v)ln∣(2v−13)+1+(2v−13)2∣+C
Answered by EDWIN88 last updated on 20/Sep/21
I=∫x2+x+1+1−1(x2+x+1)−1dxI=∫x2+x+1−1(x2+x+1−1).(x2+x+1+1)dx+∫dxx2+xI1=∫dxx2+x+1+1=∫dx(x+12)2+34+1setx+12=32tanαI1=∫sec2α(secα−1)(secα+1)(secα−1)dαI1=∫sec3α−sec2αtan2αdαI1=ln(sec(tan−1(23x+13))+23x+13)−1sin(tan−1(23x+13))−1(23x+13)+c1I2=∫dxx2+x=∫dxx(x+1)=∫(1x−1x+1)dxI2=lnx−ln(x+1)+c2∴I=I1+I2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com