All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 154647 by mathdanisur last updated on 20/Sep/21
f:Q→Qf(x+f(y))=y+f(x)∀x;y∈Q
Answered by TheHoneyCat last updated on 20/Sep/21
Idemotebyfn:f∘...∘fntimesIwontpreciseit,butwhenavalue(x,y,z...)isnotdefineditmeansitcanbeanyelementofQletIbetheidentityfunctionIamassumingthatQherestandsforQthesetofrationnalsbutnotethatthisproofworksonanygroupwere−2,−1,0,1,2arealldistinctIamalsoassumingthatthequestionis:‘‘Findallfsuchthat[yourproprety]″evaluatingforx=0weget:f2(y)=y+f(0)applyingfoverthatequalityweget:f3(y)=f(y+f(0))=0+f(y)hence:f3=f(1)f(x+f(y))=y+f(x)f(−f(y)+f(y))=y+f(f(y))i.e.f(0)−y=f2(y)sof3(y)=f(−y+f(0))=f(−y)i.e.f3=f∘(−I)hencef=f∘(−I)(2)y+f(x)=y+f(−x)=f(−x+f(y))=f(x+f(y))f(0)=f(2f(y))f(2f(y))=y+f(y)=f(0)sof2=f(3)f(x+f(y))=y+f(x)f2(y)=f(y)+f(0)sof(0)=0sof(y)=−ybuttheny!=0⇒f(−y)!=f(y)thiscontradicts(2)thereforethereisnosuchfunction◼
Commented by mathdanisur last updated on 20/Sep/21
PerfectsolutionSer,thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com