Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154649 by mathdanisur last updated on 20/Sep/21

if  n ∈ N^(>2)   prove that  [((n)^(1/3)  + ((n + 2))^(1/3)  )^3 ] + 1 = 0 (mod 8)

$$\mathrm{if}\:\:\mathrm{n}\:\in\:\mathbb{N}^{>\mathrm{2}} \:\:\mathrm{prove}\:\mathrm{that} \\ $$ $$\left[\left(\sqrt[{\mathrm{3}}]{\mathrm{n}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{n}\:+\:\mathrm{2}}\:\right)^{\mathrm{3}} \right]\:+\:\mathrm{1}\:=\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$

Commented byMJS_new last updated on 20/Sep/21

just a try  let n=t−1 ⇒ t≥3  f(t)∈R∧0≤f(t)<1  (((t−1))^(1/3) +((t+1))^(1/3) )^3 +1−f(t)=8t  f(t)=1−6t+3((((t−1)^2 (t+1)))^(1/3) +(((t−1)(t+1)^2 ))^(1/3) )  we must show 0≤f(t)<1 ∀ t≥3  f(3)≈.0839  and it′s easy to show that  lim_(t→∞)  f(t) =1

$$\mathrm{just}\:\mathrm{a}\:\mathrm{try} \\ $$ $$\mathrm{let}\:{n}={t}−\mathrm{1}\:\Rightarrow\:{t}\geqslant\mathrm{3} \\ $$ $${f}\left({t}\right)\in\mathbb{R}\wedge\mathrm{0}\leqslant{f}\left({t}\right)<\mathrm{1} \\ $$ $$\left(\sqrt[{\mathrm{3}}]{{t}−\mathrm{1}}+\sqrt[{\mathrm{3}}]{{t}+\mathrm{1}}\right)^{\mathrm{3}} +\mathrm{1}−{f}\left({t}\right)=\mathrm{8}{t} \\ $$ $${f}\left({t}\right)=\mathrm{1}−\mathrm{6}{t}+\mathrm{3}\left(\sqrt[{\mathrm{3}}]{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \left({t}+\mathrm{1}\right)}+\sqrt[{\mathrm{3}}]{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$ $$\mathrm{we}\:\mathrm{must}\:\mathrm{show}\:\mathrm{0}\leqslant{f}\left({t}\right)<\mathrm{1}\:\forall\:{t}\geqslant\mathrm{3} \\ $$ $${f}\left(\mathrm{3}\right)\approx.\mathrm{0839} \\ $$ $$\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$ $$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({t}\right)\:=\mathrm{1} \\ $$

Commented bymathdanisur last updated on 20/Sep/21

Very nice Ser, thank you

$$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com