Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 154661 by physicstutes last updated on 20/Sep/21

Answered by mr W last updated on 20/Sep/21

x=d cos φ=v_i cos θ_i t   ...(1)  y=d sin φ=v_i sin θ_i t−(1/2)gt^2    ...(2)  from (1):  t=((d cos φ)/(v_i  cos θ_i ))  put this into (2):  d sin φ=v_i sin θ_i ×((d cos φ)/(v_i  cos θ_i ))−(1/2)g(((d cos φ)/(v_i  cos θ_i )))^2   sin φ=sin θ_i ×(( cos φ)/(cos θ_i ))−((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos^2  θ_i ))  ((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos θ_i ))=sin θ_i  cos φ−cos θ_i sin φ  ((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos θ_i ))=sin (θ_i −φ)  d=((2v_i ^2 cos θ_i  sin (θ_i −φ))/(g cos^2  φ))    (d/dθ_i )(((gd cos^2  φ)/(2v_i ^2 )))=(d/dθ_i )[cos θ_i  sin (θ_i −φ)]=0  −sin θ_i sin (θ_i −φ)+cos θ_i cos (θ_i −φ)=0  cos (2θ_i −φ)=0  ⇒2θ_i −φ=(π/2)  ⇒θ_i =(π/4)+(φ/2)  d_(max) =((2v_i ^2 cos ((π/4)+(φ/2)) sin ((π/4)−(φ/2)))/(g cos^2  φ))  d_(max) =((v_i ^2 (cos (φ/2)−sin (φ/2))^2 )/(g cos^2  φ))  d_(max) =((v_i ^2 (1−sin φ))/(g cos^2  φ))  d_(max) =((v_i ^2 (1−sin φ))/(g(1−sin^2  φ)))  ⇒d_(max) =(v_i ^2 /(g(1+sin φ)))

x=dcosϕ=vicosθit...(1)y=dsinϕ=visinθit12gt2...(2)from(1):t=dcosϕvicosθiputthisinto(2):dsinϕ=visinθi×dcosϕvicosθi12g(dcosϕvicosθi)2sinϕ=sinθi×cosϕcosθigd2vi2×cos2ϕcos2θigd2vi2×cos2ϕcosθi=sinθicosϕcosθisinϕgd2vi2×cos2ϕcosθi=sin(θiϕ)d=2vi2cosθisin(θiϕ)gcos2ϕddθi(gdcos2ϕ2vi2)=ddθi[cosθisin(θiϕ)]=0sinθisin(θiϕ)+cosθicos(θiϕ)=0cos(2θiϕ)=02θiϕ=π2θi=π4+ϕ2dmax=2vi2cos(π4+ϕ2)sin(π4ϕ2)gcos2ϕdmax=vi2(cosϕ2sinϕ2)2gcos2ϕdmax=vi2(1sinϕ)gcos2ϕdmax=vi2(1sinϕ)g(1sin2ϕ)dmax=vi2g(1+sinϕ)

Commented by mathdanisur last updated on 21/Sep/21

Very nice Ser thankyou

VeryniceSerthankyou

Commented by physicstutes last updated on 21/Sep/21

+brilliant+

+brilliant+

Commented by Tawa11 last updated on 21/Sep/21

Weldone sir

Weldonesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com