Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 154669 by SANOGO last updated on 20/Sep/21

Answered by ARUNG_Brandon_MBU last updated on 20/Sep/21

I=∫_0 ^1 (dt/( (√(1+t^2 ))+(√(1−t^2 ))))=(1/2)∫_0 ^1 ((√(1+t^2 ))−(√(1−t^2 )))dt    =(1/2)∫_0 ^(argsh(1)) cosh^2 ϑdϑ−(1/2)∫_0 ^(π/2) cos^2 ϑdϑ    =(1/4)∫_0 ^(argsh(1)) (1+cosh2ϑ)dϑ−(1/4)∫_0 ^(π/2) (cos2ϑ+1)dϑ    =(1/4)argsh(1)+[((sinh2ϑ)/8)]_0 ^(argsh(1)) −(1/4)[((sin2ϑ)/2)+ϑ]_0 ^(π/2)     =(1/4)ln(1+(√2))+((√2)/4)−(π/8)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\right){dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} \mathrm{cosh}^{\mathrm{2}} \vartheta{d}\vartheta−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} \vartheta{d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} \left(\mathrm{1}+\mathrm{cosh2}\vartheta\right){d}\vartheta−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{cos2}\vartheta+\mathrm{1}\right){d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{argsh}\left(\mathrm{1}\right)+\left[\frac{\mathrm{sinh2}\vartheta}{\mathrm{8}}\right]_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} −\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{sin2}\vartheta}{\mathrm{2}}+\vartheta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}−\frac{\pi}{\mathrm{8}} \\ $$

Commented by ARUNG_Brandon_MBU last updated on 20/Sep/21

Ah oui ! merci.

$$\mathrm{Ah}\:\mathrm{oui}\:!\:\mathrm{merci}. \\ $$

Commented by puissant last updated on 20/Sep/21

Broo attention !!!!  (1/( (√(1+t^2 ))+(√(1−t^2 ))))=(((√(1+t^2 ))−(√(1−t^2 )))/(2t^2 ))..

$${Broo}\:{attention}\:!!!! \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}{t}^{\mathrm{2}} }.. \\ $$

Commented by SANOGO last updated on 20/Sep/21

supere demonstratin

$${supere}\:{demonstratin} \\ $$

Answered by ARUNG_Brandon_MBU last updated on 20/Sep/21

I=∫_0 ^1 (dt/( (√(1+t^2 ))+(√(1−t^2 ))))=∫_0 ^1 (((√(1+t^2 ))−(√(1−t^2 )))/(2t^2 ))dt    =(1/2)∫_0 ^(argsh(1)) ((cosh^2 ϑ)/(sinh^2 ϑ))dϑ−(1/2)∫_0 ^(π/2) ((cos^2 ϑ)/(sin^2 ϑ))dϑ    =(1/2)∫_0 ^(argsh(1)) (cosech^2 ϑ+1)dϑ−(1/2)∫_0 ^(π/2) (csc^2 ϑ−1)dϑ    =(1/2)[ϑ−cothϑ]_0 ^(argsh(1)) +(1/2)[cotϑ+ϑ]_0 ^(π/2)     =(1/2)ln(1+(√2))−((√2)/2)+(π/4)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}{t}^{\mathrm{2}} }{dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} \frac{\mathrm{cosh}^{\mathrm{2}} \vartheta}{\mathrm{sinh}^{\mathrm{2}} \vartheta}{d}\vartheta−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}^{\mathrm{2}} \vartheta}{\mathrm{sin}^{\mathrm{2}} \vartheta}{d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} \left(\mathrm{cosech}^{\mathrm{2}} \vartheta+\mathrm{1}\right){d}\vartheta−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{csc}^{\mathrm{2}} \vartheta−\mathrm{1}\right){d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\vartheta−\mathrm{coth}\vartheta\right]_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{1}\right)} +\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cot}\vartheta+\vartheta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}} \\ $$

Commented by SANOGO last updated on 20/Sep/21

merci bien mon grand

$${merci}\:{bien}\:{mon}\:{grand} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com