All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 15471 by Mr easymsn last updated on 10/Jun/17
Answered by sma3l2996 last updated on 10/Jun/17
(a)2sin(x)cos(x)+sinx=1−2cos2x−cosxsin(x)(2cos(x)+1)=1−2cos2x−cosxletcosx=t1−t2(2t+1)=1−2t2−t(1−t2)(2t+1)2=(1−2t2−t)2(1−t2)(4t2+4t+1)=(t+1)2(−2t+1)2(1−t)(1+t)(4t2+4t+1)=(t+1)2(4t2−4t+1)(1−t)(4t2+4t+1)=(t+1)(4t2−4t+1)4t2+4t+1−4t3−4t2−t=4t3−4t2+t+4t2−4t+1−4t3+3t=4t3−3tt(8t2−6)=0⇔t=0ort2=34t=0ort=+−32x=+−π2,+−π6,+−5π6(b)2sin2x+sin2(2x)−2=02sin2x+4sin2(x)cos2(x)−2=0sin2x+2sin2x(1−sin2x)−1=0sin2x+2sin2x−2sin4x−1=02sin4x−3sin2x+1=0⇔(sin2x−1)(2sin2x−1)=0sin2x=1orsin2x=12sinx=+−1orsinx=+−22x=+−π2,+−π4,+−3π4(c)3sinx+3cosx=33cosx=3(1−sinx)3cosx=9(1+sin2x−2sinx)=9(2−cos2x−2sinx)cosx=6−3cos2x−6sinx3cos2x+cosx−6=−6sinxlett=cosx3t2+t−6=−61−t2(3t2+t−6)2=36−36t29t4+6t2(t−6)+t2−12t+36=36−36t29t4+6t3−36t2+t2−12t=−36t29t4+6t3+t2−12t=0t(9t3+6t2+t−12)=0
Commented by myintkhaing last updated on 11/Jun/17
cos2x=2cos2x−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com