Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154736 by mathdanisur last updated on 21/Sep/21

Commented by Tawa11 last updated on 21/Sep/21

Weldone sir.

Weldonesir.

Answered by mr W last updated on 21/Sep/21

Commented by mr W last updated on 21/Sep/21

((16)/(tan θ))+16+7+(7/(tan ((π/2)−(θ/2))))=((16)/(sin θ))+((16)/(cos θ))  23+7 tan (θ/2)=16((1/(sin θ))+(1/(cos θ))−(1/(tan θ)))  let t=tan (θ/2)  23+7t=16(((1+t^2 )/(2t))+((1+t^2 )/(1−t^2 ))−((1−t^2 )/(2t)))  23−9t=((16(1+t^2 ))/(1−t^2 ))  9t^3 −39t^2 −9t+7=0  (3t−1)(3t^2 −12t−7)=0  t=(1/3) ✓  t=2±((√(51))/3) (rejected, since 0<tan (θ/2)<1)  tan (θ/2)=(1/3)  tan θ=((2×(1/3))/(1−((1/3))^2 ))=(3/4)  A_(blue) =((16)/2)×16 tan θ+(7/2)×(7/(tan (θ/2)))  A_(blue) =128×(3/4)+((49)/(2×(1/3)))  A_(blue) =((339)/2)=169.5

16tanθ+16+7+7tan(π2θ2)=16sinθ+16cosθ23+7tanθ2=16(1sinθ+1cosθ1tanθ)lett=tanθ223+7t=16(1+t22t+1+t21t21t22t)239t=16(1+t2)1t29t339t29t+7=0(3t1)(3t212t7)=0t=13t=2±513(rejected,since0<tanθ2<1)tanθ2=13tanθ=2×131(13)2=34Ablue=162×16tanθ+72×7tanθ2Ablue=128×34+492×13Ablue=3392=169.5

Commented by mathdanisur last updated on 21/Sep/21

Creativ solution Ser, thank you

CreativsolutionSer,thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com