Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154780 by talminator2856791 last updated on 21/Sep/21

             ∫_(−∞) ^( ∞)  (1/(x^4 +x^3 +x^2 +1)) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$

Answered by phanphuoc last updated on 21/Sep/21

you can find a b c d st   x^4 +x^3 +x^2 +1=(x^2 +ax+b)(x^2 +cx+d)

$${you}\:{can}\:{find}\:{a}\:{b}\:{c}\:{d}\:{st} \\ $$$$\:{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}=\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} +{cx}+{d}\right) \\ $$

Answered by MJS_new last updated on 21/Sep/21

(x−1)(x^4 +x^3 +x^2 +x+1)=x^5 −1  ⇒  x^4 +x^3 +x^2 +x+1=(x^2 +((1−(√5))/2)x+1)(x^2 +((1+(√5))/2)x+1)  ∫(dx/(x^4 +x^3 +x^2 +x+1))=  =−((√5)/(10))∫((2x+1−(√5))/(x^2 +((1−(√5))/2)x+1))dx+((√5)/(10))∫((2x+1+(√5))/(x^2 +((1+(√5))/2)x+1))dx  now use formula

$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)={x}^{\mathrm{5}} −\mathrm{1} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\left({x}^{\mathrm{2}} +\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right) \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}= \\ $$$$=−\frac{\sqrt{\mathrm{5}}}{\mathrm{10}}\int\frac{\mathrm{2}{x}+\mathrm{1}−\sqrt{\mathrm{5}}}{{x}^{\mathrm{2}} +\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}}{dx}+\frac{\sqrt{\mathrm{5}}}{\mathrm{10}}\int\frac{\mathrm{2}{x}+\mathrm{1}+\sqrt{\mathrm{5}}}{{x}^{\mathrm{2}} +\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}}{dx} \\ $$$$\mathrm{now}\:\mathrm{use}\:\mathrm{formula} \\ $$

Commented by Ar Brandon last updated on 21/Sep/21

Sir I thought of doing same before realising that it was  ∫_(−∞) ^∞ (dx/(x^4 +x^3 +x^2 +1)) instead of ∫_(−∞) ^∞ (dx/(x^4 +x^3 +x^2 +x+1))

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{of}\:\mathrm{doing}\:\mathrm{same}\:\mathrm{before}\:\mathrm{realising}\:\mathrm{that}\:\mathrm{it}\:\mathrm{was} \\ $$$$\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{instead}\:\mathrm{of}\:\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$

Commented by MJS_new last updated on 21/Sep/21

you′re right... we see what we like to see...

$$\mathrm{you}'\mathrm{re}\:\mathrm{right}...\:\mathrm{we}\:\mathrm{see}\:\mathrm{what}\:\mathrm{we}\:\mathrm{like}\:\mathrm{to}\:\mathrm{see}... \\ $$

Commented by Rasheed.Sindhi last updated on 21/Sep/21

Good Saying: we see what we like to see!

$$\mathcal{G}{ood}\:\mathcal{S}{aying}:\:\mathrm{we}\:\mathrm{see}\:\mathrm{what}\:\mathrm{we}\:\mathrm{like}\:\mathrm{to}\:\mathrm{see}! \\ $$

Answered by mindispower last updated on 22/Sep/21

=2iπΣ_(w∈{1+w^2 +w^3 +w^4 =0}) (1/(4w^3 +3w^2 +2w))

$$=\mathrm{2}{i}\pi\underset{{w}\in\left\{\mathrm{1}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} +{w}^{\mathrm{4}} =\mathrm{0}\right\}} {\sum}\frac{\mathrm{1}}{\mathrm{4}{w}^{\mathrm{3}} +\mathrm{3}{w}^{\mathrm{2}} +\mathrm{2}{w}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com