Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 15480 by ajfour last updated on 10/Jun/17

Commented by ajfour last updated on 10/Jun/17

Q. 15434  answered here.   To find maximum length of  AB, in terms of r,R, and d .

$${Q}.\:\mathrm{15434}\:\:{answered}\:{here}. \\ $$$$\:{To}\:{find}\:{maximum}\:{length}\:{of} \\ $$$${AB},\:{in}\:{terms}\:{of}\:\boldsymbol{{r}},\boldsymbol{{R}},\:{and}\:\boldsymbol{{d}}\:. \\ $$

Answered by ajfour last updated on 11/Jun/17

 To find P(h,k).   x^2 +y^2 =r^2    (x−d)^2 +y^2 =R^2   subtracting to  obtain h          2dh=R^2 −r^2     h=((R^2 −r^2 )/(2d))     k=  (√(r^2 −h^2 ))    (considering just                          the positive one here)  let equation of APB be,          y=m(x−h)+k  solving this with x^2 +y^2 =r^2    x^2 +[m(x−h)+k]^2 −r^2 =0  (1+m^2 )x^2 +(−2m^2 h+2mk)x+c_1 =0  its roots are  h and x_1 .  so    x_1 +h=−(((−2m^2 h+2mk)/(1+m^2 )))    ...(i)  Again solving line     y=m(x−h)+k   witb (x−d)^2 +y^2 =R^2     (x−d)^2 +[m(x−h)+k]^2 −R^2 =0   (1+m^2 )x^2 +(−2d−2m^2 h+2mk)x+c_2 =0  its roots are h, and x_2 .    x_2 +h=−(((−2d−2m^2 h+2mk)/(1+m^2 )))   ..(ii)  eqn. (i)−eqn.(ii) gives:                   x_2 −x_1 =((2d)/(1+m^2 ))  length of AB  = (√(1+m^2 ))(x_2 −x_1 )             l_(AB) = ((2d)/(√(1+m^2 ))) and is clearly  maximum for m=0, and   (length AB)_(max) = 2d .

$$\:{To}\:{find}\:{P}\left({h},{k}\right). \\ $$$$\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\:\left({x}−{d}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${subtracting}\:{to}\:\:{obtain}\:\boldsymbol{{h}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}{dh}={R}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\:\:{h}=\frac{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}{d}} \\ $$$$\:\:\:{k}=\:\:\sqrt{{r}^{\mathrm{2}} −{h}^{\mathrm{2}} }\:\:\:\:\left({considering}\:{just}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{the}\:{positive}\:{one}\:{here}\right) \\ $$$${let}\:{equation}\:{of}\:{APB}\:{be}, \\ $$$$\:\:\:\:\:\:\:\:{y}={m}\left({x}−{h}\right)+{k} \\ $$$${solving}\:{this}\:{with}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\:{x}^{\mathrm{2}} +\left[{m}\left({x}−{h}\right)+{k}\right]^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{1}+{m}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\left(−\mathrm{2}{m}^{\mathrm{2}} {h}+\mathrm{2}{mk}\right){x}+{c}_{\mathrm{1}} =\mathrm{0} \\ $$$${its}\:{roots}\:{are}\:\:{h}\:{and}\:{x}_{\mathrm{1}} . \\ $$$${so}\:\:\:\:{x}_{\mathrm{1}} +{h}=−\left(\frac{−\mathrm{2}{m}^{\mathrm{2}} {h}+\mathrm{2}{mk}}{\mathrm{1}+{m}^{\mathrm{2}} }\right)\:\:\:\:...\left({i}\right) \\ $$$${Again}\:{solving}\:{line} \\ $$$$\:\:\:{y}={m}\left({x}−{h}\right)+{k} \\ $$$$\:{witb}\:\left({x}−{d}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\:\:\left({x}−{d}\right)^{\mathrm{2}} +\left[{m}\left({x}−{h}\right)+{k}\right]^{\mathrm{2}} −{R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\left(\mathrm{1}+{m}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\left(−\mathrm{2}{d}−\mathrm{2}{m}^{\mathrm{2}} {h}+\mathrm{2}{mk}\right){x}+{c}_{\mathrm{2}} =\mathrm{0} \\ $$$${its}\:{roots}\:{are}\:\boldsymbol{{h}},\:{and}\:\boldsymbol{{x}}_{\mathrm{2}} . \\ $$$$\:\:{x}_{\mathrm{2}} +{h}=−\left(\frac{−\mathrm{2}{d}−\mathrm{2}{m}^{\mathrm{2}} {h}+\mathrm{2}{mk}}{\mathrm{1}+{m}^{\mathrm{2}} }\right)\:\:\:..\left({ii}\right) \\ $$$${eqn}.\:\left({i}\right)−{eqn}.\left({ii}\right)\:{gives}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} −{x}_{\mathrm{1}} =\frac{\mathrm{2}{d}}{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$${length}\:{of}\:{AB}\:\:=\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{l}_{{AB}} =\:\frac{\mathrm{2}{d}}{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}\:{and}\:{is}\:{clearly} \\ $$$${maximum}\:{for}\:{m}=\mathrm{0},\:{and} \\ $$$$\:\left({length}\:{AB}\right)_{{max}} =\:\mathrm{2}{d}\:. \\ $$$$ \\ $$

Commented by mrW1 last updated on 11/Jun/17

VERY NICE

$$\boldsymbol{\mathcal{V}}\mathcal{ERY}\:\mathcal{NICE} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com