Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 154853 by peter frank last updated on 22/Sep/21

Answered by peter frank last updated on 23/Sep/21

Commented by peter frank last updated on 23/Sep/21

from Bernoullis principle  p+(1/2)ρv_1 ^2 +ρgh=p_a +(1/2)ρv_2 ^2 +ρgh  v_1 ≈0   (A_1 >>>>A_2 )  p+(1/2)ρv_1 ^2 =p_a +(1/2)ρv_2 ^2   p−p_a =(1/2)ρv_2 ^2   v_2 ^2 =((2(p−p_a ))/ρ)  v_2 =(√((2(p−p_a ))/ρ))        [p−p_a ]=8×10^5 p_a    ρ_(H_2 0) =1000kgm^(−3)   v_2 =40m/s  consider projectile motion of water  y=(1/2)gt^2          [u=0]  x=v_2 cos θt    [θ=0]  x=v_2 t  y=(1/2)g((x/v_2 ))^2   y=2   v_2 =40m/s  x=(√((1000×4)/(9.8)))  x=25.6m  (a)    d=(√(x^2 +y^2 ))        [pythagorous]       v=(√((25.6)^2 +2^2 ))        v=25.678m             (b)vertical force=AρV_y   V_y =?   A=1cm^(2   )   V_y =v_y_o  +gt    [v_y_o  ]=0  t=(x/v)=((25.6)/(40))=  V_y =gt=6.27m/s  vertical force=AρV_y =3.93N  (c)Horizontal force exerted on  the tank=ρAV^2   =1000×(1×10^(−4) )×(40)^2   =160N

$$\mathrm{from}\:\mathrm{Bernoullis}\:\mathrm{principle} \\ $$$$\mathrm{p}+\frac{\mathrm{1}}{\mathrm{2}}\rho\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} +\rho\mathrm{gh}=\mathrm{p}_{\mathrm{a}} +\frac{\mathrm{1}}{\mathrm{2}}\rho\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} +\rho\mathrm{gh} \\ $$$$\mathrm{v}_{\mathrm{1}} \approx\mathrm{0}\:\:\:\left(\mathrm{A}_{\mathrm{1}} >>>>\mathrm{A}_{\mathrm{2}} \right) \\ $$$$\mathrm{p}+\frac{\mathrm{1}}{\mathrm{2}}\rho\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{p}_{\mathrm{a}} +\frac{\mathrm{1}}{\mathrm{2}}\rho\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\mathrm{p}−\mathrm{p}_{\mathrm{a}} =\frac{\mathrm{1}}{\mathrm{2}}\rho\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{2}\left(\mathrm{p}−\mathrm{p}_{\mathrm{a}} \right)}{\rho} \\ $$$$\mathrm{v}_{\mathrm{2}} =\sqrt{\frac{\mathrm{2}\left(\mathrm{p}−\mathrm{p}_{\mathrm{a}} \right)}{\rho}}\:\:\:\: \\ $$$$\:\:\left[\mathrm{p}−\mathrm{p}_{\mathrm{a}} \right]=\mathrm{8}×\mathrm{10}^{\mathrm{5}} \mathrm{p}_{\mathrm{a}} \:\:\:\rho_{\mathrm{H}_{\mathrm{2}} \mathrm{0}} =\mathrm{1000kgm}^{−\mathrm{3}} \\ $$$$\mathrm{v}_{\mathrm{2}} =\mathrm{40m}/\mathrm{s} \\ $$$$\mathrm{consider}\:\mathrm{projectile}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{water} \\ $$$$\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\left[\mathrm{u}=\mathrm{0}\right] \\ $$$$\mathrm{x}=\mathrm{v}_{\mathrm{2}} \mathrm{cos}\:\theta\mathrm{t}\:\:\:\:\left[\theta=\mathrm{0}\right] \\ $$$$\mathrm{x}=\mathrm{v}_{\mathrm{2}} \mathrm{t} \\ $$$$\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}\left(\frac{\mathrm{x}}{\mathrm{v}_{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$\mathrm{y}=\mathrm{2}\:\:\:\mathrm{v}_{\mathrm{2}} =\mathrm{40m}/\mathrm{s} \\ $$$$\mathrm{x}=\sqrt{\frac{\mathrm{1000}×\mathrm{4}}{\mathrm{9}.\mathrm{8}}} \\ $$$$\mathrm{x}=\mathrm{25}.\mathrm{6m} \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\mathrm{d}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\left[\mathrm{pythagorous}\right] \\ $$$$\:\:\:\:\:\mathrm{v}=\sqrt{\left(\mathrm{25}.\mathrm{6}\right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\mathrm{v}=\mathrm{25}.\mathrm{678m} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{b}\right)\mathrm{vertical}\:\mathrm{force}=\mathrm{A}\rho\mathrm{V}_{\mathrm{y}} \\ $$$$\mathrm{V}_{\mathrm{y}} =?\:\:\:\mathrm{A}=\mathrm{1cm}^{\mathrm{2}\:\:\:} \\ $$$$\mathrm{V}_{\mathrm{y}} =\mathrm{v}_{\mathrm{y}_{\mathrm{o}} } +\mathrm{gt}\:\:\:\:\left[\mathrm{v}_{\mathrm{y}_{\mathrm{o}} } \right]=\mathrm{0} \\ $$$$\mathrm{t}=\frac{\mathrm{x}}{\mathrm{v}}=\frac{\mathrm{25}.\mathrm{6}}{\mathrm{40}}= \\ $$$$\mathrm{V}_{\mathrm{y}} =\mathrm{gt}=\mathrm{6}.\mathrm{27m}/\mathrm{s} \\ $$$$\mathrm{vertical}\:\mathrm{force}=\mathrm{A}\rho\mathrm{V}_{\mathrm{y}} =\mathrm{3}.\mathrm{93N} \\ $$$$\left(\mathrm{c}\right)\mathrm{Horizontal}\:\mathrm{force}\:\mathrm{exerted}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{tank}=\rho\mathrm{AV}^{\mathrm{2}} \\ $$$$=\mathrm{1000}×\left(\mathrm{1}×\mathrm{10}^{−\mathrm{4}} \right)×\left(\mathrm{40}\right)^{\mathrm{2}} \\ $$$$=\mathrm{160N} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com