Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 154877 by SANOGO last updated on 22/Sep/21

∫_(π/2) ^(π/4) sin^3 (x)cos^2 (x)dx

π2π4sin3(x)cos2(x)dx

Commented by saly last updated on 24/Sep/21

 thank you

thankyou

Answered by Mr.D.N. last updated on 22/Sep/21

   ∫_(π/2) ^( (π/4))  sin^3 (x) cos^2 (x) dx       ∫_(π/2) ^( (π/4))   sin^2 x.cos^2 x. sin x dx     ∫_(π/2) ^( (π/4))   (1−cos^2 x)cos^2 x sinx dx     put cos x= t       −sin x dx =dt        sin x dx= −dt     change limit,    if x=(π/4) then t= (1/( (√2)))   if x= (π/2) then t= 0     −∫_0 ^( (1/( (√2))))   (1−t^2 )t^2 dt     ∫_0 ^(1/( (√2)))  ( t^4 −t^2 )dt   =     [(t^5 /5)−(t^3 /3)]_0 ^(1/( (√2)))    =  [t^3 ((1/5)t^2 −(1/3))]_0 ^(1/(√2))    = [ ((1/( (√2))))^3 {(1/5)((√2) )^2 −(1/3)}]−0   = (1/( (√2)))×(1/2)((2/5)−(1/3))    = (1/( 2(√2)))(((6−5)/(15)))=(1/(30(√2))) //.

π2π4sin3(x)cos2(x)dxπ2π4sin2x.cos2x.sinxdxπ2π4(1cos2x)cos2xsinxdxputcosx=tsinxdx=dtsinxdx=dtchangelimit,ifx=π4thent=12ifx=π2thent=0012(1t2)t2dt012(t4t2)dt=[t55t33]012=[t3(15t213)]01/2=[(12)3{15(2)213}]0=12×12(2513)=122(6515)=1302//.

Commented by SANOGO last updated on 23/Sep/21

merci bien

mercibien

Answered by Ar Brandon last updated on 23/Sep/21

I=∫_(π/2) ^(π/4) sin^3 xcos^2 xdx=∫_(π/2) ^(π/4) sinx(cos^2 x−cos^4 x)dx    =∫_(π/2) ^(π/4) (cos^4 x−cos^2 x)d(cosx)=[((cos^5 x)/5)−((cos^3 x)/3)]_(π/2) ^(π/4)     =(1/(5(√2^5 )))−(1/(3(√2^3 )))=(1/(20(√2)))−(1/(6(√2)))=−((7(√2))/(120))

I=π2π4sin3xcos2xdx=π2π4sinx(cos2xcos4x)dx=π2π4(cos4xcos2x)d(cosx)=[cos5x5cos3x3]π2π4=15251323=1202162=72120

Terms of Service

Privacy Policy

Contact: info@tinkutara.com