Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 154880 by saly last updated on 22/Sep/21

Answered by Ar Brandon last updated on 22/Sep/21

I_1 =∫((√(x^2 +9))/x^3 )dx, x=3shϑ      =(1/3)∫((ch^2 ϑ)/(sh^3 ϑ))dϑ=(1/3)∫cth^2 ϑ∙cschϑdϑ      =−(1/3)∫((√(csch^2 ϑ+1)))d(cschϑ)      =(1/3)∫(√(u^2 +1))d(u)=(1/3)∫ch^2 θdθ=(1/6)(θ+((shθ)/2))+C      =(1/6)(argsh(csch(argh((x/3))))+(1/2)sh(argsh(csch(argh((x/3)))))+C

I1=x2+9x3dx,x=3shϑ=13ch2ϑsh3ϑdϑ=13cth2ϑcschϑdϑ=13(csch2ϑ+1)d(cschϑ)=13u2+1d(u)=13ch2θdθ=16(θ+shθ2)+C=16(argsh(csch(argh(x3)))+12sh(argsh(csch(argh(x3))))+C

Answered by maged last updated on 23/Sep/21

solution (1)  I=∫((x dx)/( (√(x^2 −7))))=^(x=(√7)secu) 7∫((sec^2 utanu du)/( (√(7(sec^2 u−1)))))   =(√7)∫((sec^2 u tanu du)/( tanu))  =(√7)∫sec^2 u du=(√7)secu sinu+C  =(√(x^2 −7))+C

solution(1)I=xdxx27=x=7secu7sec2utanudu7(sec2u1)=7sec2utanudutanu=7sec2udu=7secusinu+C=x27+C

Answered by Ar Brandon last updated on 23/Sep/21

I_1 =∫((√(x^2 −9))/x^3 )dx, x=3secϑ⇒dx=3secϑtanϑdϑ      =(1/3)∫((tan^2 ϑ)/(sec^2 ϑ))dϑ=(1/3)∫sin^2 ϑdϑ=(1/6)(ϑ−((sin2ϑ)/2))+C      =(1/6)(sec^(−1) ((x/3))−(1/2)sin(2sec^(−1) ((x/3))))+C    I_2 =∫(x/( (√(x^2 −7))))dx=(1/2)∫((2x)/( (√(x^2 −7))))dx      =(1/2)∫((d(x^2 −7))/( (√(x^2 −7))))=(√(x^2 −7))+C_2     I_3 =∫((√(x^2 +4x−5))/(x+2))dx=∫((√((x+2)^2 −9))/(x+2))dx, x+2=3secϑ      =3∫tan^2 ϑdϑ=3∫(sec^2 ϑ−1)dϑ=3(tanϑ−ϑ)+C      =3(tan(sec^(−1) (((x+2)/3)))−sec^(−1) (((x+2)/3)))+C_3     I_4 =∫(x^3 /((x^2 −16)^(3/2) ))dx, x=4secϑ⇒dx=4secϑtanϑ      =∫((64sec^3 ϑ∙4secϑtanϑ)/((16sec^2 ϑ−16)^(3/2) ))dϑ=4∫((sec^4 ϑtanϑ)/(tan^3 ϑ))dϑ      =4∫((sec^4 ϑ)/(tan^2 ϑ))dϑ=4∫((1+tan^2 ϑ)/(tan^2 ϑ))d(tanϑ)      =4(tanϑ−(1/(tanϑ)))+C=4(tan(sec^(−1) ((x/4)))+cot(sec^(−1) ((x/4))))+C_4

I1=x29x3dx,x=3secϑdx=3secϑtanϑdϑ=13tan2ϑsec2ϑdϑ=13sin2ϑdϑ=16(ϑsin2ϑ2)+C=16(sec1(x3)12sin(2sec1(x3)))+CI2=xx27dx=122xx27dx=12d(x27)x27=x27+C2I3=x2+4x5x+2dx=(x+2)29x+2dx,x+2=3secϑ=3tan2ϑdϑ=3(sec2ϑ1)dϑ=3(tanϑϑ)+C=3(tan(sec1(x+23))sec1(x+23))+C3I4=x3(x216)3/2dx,x=4secϑdx=4secϑtanϑ=64sec3ϑ4secϑtanϑ(16sec2ϑ16)3/2dϑ=4sec4ϑtanϑtan3ϑdϑ=4sec4ϑtan2ϑdϑ=41+tan2ϑtan2ϑd(tanϑ)=4(tanϑ1tanϑ)+C=4(tan(sec1(x4))+cot(sec1(x4)))+C4

Commented by saly last updated on 24/Sep/21

 thank you

thankyou

Answered by maged last updated on 23/Sep/21

solution:  I=∫((√(x^2 −9))/x^3 )dx=^(x=3secu) (1/( 3))∫((tan^2 u secu)/(sec^3 u))du  =(1/( 3))∫cos^2 u tan^2 u du  =(1/( 3))∫sin^2 u du=(1/( 6))∫(1−cos2u)du  =(1/6)(u−(1/2)sin2u)+C  =(1/6)(u−sinu cosu)+C  =(1/6)sec^(−1) ((x/( 3)))−((√(x^2 −9))/(2x^2 ))+C

solution:I=x29x3dx=x=3secu13tan2usecusec3udu=13cos2utan2udu=13sin2udu=16(1cos2u)du=16(u12sin2u)+C=16(usinucosu)+C=16sec1(x3)x292x2+C

Answered by maged last updated on 23/Sep/21

I_3 =∫((√(x^2 +4x−5))/(x+2))dx  solution:  I_3 =∫((√(x^2 +4x−5))/(x+2))dx  =∫((√(x^2 +4x+4−9))/(x+2))dx  =∫((√((x+2)^2 −9))/(x+2))dx=^(x+2=3secu) ∫((√(9(sec^2 u−1)))/(3secu))3secu tanu du  =3∫tan^2 u du=3∫(sec^2 u−1)du  =3tanu−3u+C  =(√((x+2)^2 −9)) −3sec^(−1) (((x+2)/3))+C  =(√(x^2 +4x−5)) −3sec^(−1) (((x+2)/3))+C

I3=x2+4x5x+2dxsolution:I3=x2+4x5x+2dx=x2+4x+49x+2dx=(x+2)29x+2dx=x+2=3secu9(sec2u1)3secu3secutanudu=3tan2udu=3(sec2u1)du=3tanu3u+C=(x+2)293sec1(x+23)+C=x2+4x53sec1(x+23)+C

Commented by saly last updated on 24/Sep/21

 thank you

thankyou

Answered by maged last updated on 23/Sep/21

I_4 =∫(x^3 /( (√((x^2 −16)^3 ))))dx  solution:  I=∫(x^3 /( (√((x^2 −16)^3 ))))dx=^(x=4secu) ∫((64sec^3 u )/( (√(16^3 (sec^2 −1)^3 ))))4secu tanu du    =4^3 ∫((sec^3 u )/( 4^3 tan^3 u))4secu tanu du    =4∫((sec^4 u)/(tan^2 u)) du =4∫(((1+tan^2 u)^2 )/(tan^2 u))du  =4∫(((1+tan^2 u)/(tanu)))^2 du=4∫((1/(tan u))+tanu)^2 du  =4∫(cot^2 u+2+tan^2 u)du  =4∫(cosec^2 u−1+sec^2 u−1+2)du  =4∫(sec^2 u+cosec^2 u)du  =4tanu−4cotu+C  ∵x=4secu→tanu=(1/4)(√(x^2 −16))  cotu=(4/( (√(x^2 −16))))  I=(√(x^2 −16−))((16)/( (√(x^2 −16))))+C

I4=x3(x216)3dxsolution:I=x3(x216)3dx=x=4secu64sec3u163(sec21)34secutanudu=43sec3u43tan3u4secutanudu=4sec4utan2udu=4(1+tan2u)2tan2udu=4(1+tan2utanu)2du=4(1tanu+tanu)2du=4(cot2u+2+tan2u)du=4(cosec2u1+sec2u1+2)du=4(sec2u+cosec2u)du=4tanu4cotu+Cx=4secutanu=14x216cotu=4x216I=x21616x216+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com