All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 155013 by amin96 last updated on 24/Sep/21
∫01ln(−lnx)xμ−1−ln(x)dx=?
Answered by mnjuly1970 last updated on 24/Sep/21
−ln(x)=t2⇒x=e−t2∫0∞ln(t2).e−t2(μ−1)t(2t)e−t2dt4∫0∞ln(t).e−μt2dt=tμ=y4μ∫0∞ln(yμ)e−y2dy=4μ∫0∞ln(y)e−y2dy−2ln(μ)μ∫0∞e−y2dy=4μ∫0∞ln(y).e−y2dy−πμln(μ)=y2=z1μ∫0∞ln(z).z−12.e−zdz−ln(μ).πμ=1μψ(12)Γ(12)−ln(μ).πμ=πμ(ψ(12)−ln(μ))=πμ(−γ−2ln(2)−ln(μ))=πμ(−γ−ln(4μ))◼
Answered by ArielVyny last updated on 24/Sep/21
−lnx=t→1x=et→1=xet→x=e−tdx=−e−tdt∫0∞ln(t)e−t(μ−1)te−tdt=∫0∞ln(t)e−tμt−12dttμ=u→μdt=du∫0∞ln(uμ)e−u(uμ)−121μduμ−12∫0∞ln(u)e−uu−12du−μ−12∫0∞ln(μ)e−uu−12duμ−12d(Γ(12))−μ−12ln(μ)Γ(12)I=μ−12Γ′(12)1−μ−12ln(μ)Γ(12)IΓ(12)=μ−12ψ(12)−μ−12ln(μ)∫01ln(−lnx)xμ−1−lnxdx=Iππ.=μ−12ψ(12)−μ−12ln(μ)I=πμ−12ψ(12)−πμ−12ln(μ)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com