Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155100 by mathdanisur last updated on 25/Sep/21

Determine all triangle with:  1.The lengths of sides positive integers       and at least one is prime number.  2.The semiperimetr is positive integer       and area is equal with perimetr.

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{with}: \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{semiperimetr}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{area}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{with}\:\mathrm{perimetr}. \\ $$

Commented by MJS_new last updated on 25/Sep/21

if a<b<c there are only 4 I think  5/12/13  6/25/29  7/15/20  9/10/17         [there′s a 5^(th)  one without primes: 6/8/10]

$$\mathrm{if}\:{a}<{b}<{c}\:\mathrm{there}\:\mathrm{are}\:\mathrm{only}\:\mathrm{4}\:\mathrm{I}\:\mathrm{think} \\ $$$$\mathrm{5}/\mathrm{12}/\mathrm{13} \\ $$$$\mathrm{6}/\mathrm{25}/\mathrm{29} \\ $$$$\mathrm{7}/\mathrm{15}/\mathrm{20} \\ $$$$\mathrm{9}/\mathrm{10}/\mathrm{17} \\ $$$$ \\ $$$$\:\:\:\:\:\left[\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{one}\:\mathrm{without}\:\mathrm{primes}:\:\mathrm{6}/\mathrm{8}/\mathrm{10}\right] \\ $$

Commented by mathdanisur last updated on 25/Sep/21

perfect my dear thankyou

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{thankyou} \\ $$

Answered by Rasheed.Sindhi last updated on 26/Sep/21

 •a,b,c,s=((a+b+c)/2)∈Z^+ ∧ a(say)∈P    •(√(s(s−a)(s−b)(s−c))) =a+b+c_(where s=(a+b+c)/2)   ((a+b+c)/2)∈Z^+ ⇒a+b+c∈E  ⇒ { ((a,b,c all are eve even⇒prime is 2)),((Two of a,b,c are odd,the third is even.)) :}  C-1: a,b,c∈E⇒a(prime)=2         b=2m,c=2n ; m,n∈Z^+      s=(2+2m+2n)/2=m+n+1     s−a=1+m+n−2=m+n−1     s−b=1+m+n−2m=−m+n+1     s−c=1+m+n−2n=m−n+1  (√(s(s−a)(s−b)(s−c)))=a+b+c  ▶(√((m+n+1)(m+n−1)(−m+n+1)(m−n+1)))                                                           =2m+2n+2  ▶ (m+n+1)(m+n−1)(−m+n+1)(m−n+1)                                                        =4(m+n+1)^2   ▶ (m+n−1)(−m+n+1)(m−n+1)                                                        =4(m+n+1)      (o,o)-case:m,n∈O        determinant ((((o,o)-case:m,n∈O)))       RHS is clearly even.       LHS:(o+o−o)(−o+o+o)(o−o+o)               =(e−o)(e+o)(e+o)               =(o)(o)(o)=o        LHS is odd.        Contradiction.        determinant ((((e,e)-case:m,n∈E)))         RHS=even      LHS:(e+e−o)(−e+e+o)(e−e+o)                  (e−o)(e+o)(e+o)                   (o)(o)(o)=o        Contradiction.        determinant ((((e,o) or (o,e)-case:m∈E,n∈O)))         Continue

$$\:\bullet{a},{b},{c},{s}=\frac{{a}+{b}+{c}}{\mathrm{2}}\in\mathbb{Z}^{+} \wedge\:{a}\left({say}\right)\in\mathbb{P}\: \\ $$$$\:\bullet\underset{{where}\:{s}=\left({a}+{b}+{c}\right)/\mathrm{2}} {\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\:={a}+{b}+{c}} \\ $$$$\frac{{a}+{b}+{c}}{\mathrm{2}}\in\mathbb{Z}^{+} \Rightarrow{a}+{b}+{c}\in\mathbb{E} \\ $$$$\Rightarrow\begin{cases}{{a},{b},{c}\:{all}\:{are}\:{eve}\:{even}\Rightarrow{prime}\:{is}\:\mathrm{2}}\\{\mathcal{T}{wo}\:{of}\:{a},{b},{c}\:{are}\:{odd},{the}\:{third}\:{is}\:{even}.}\end{cases} \\ $$$$\mathrm{C}-\mathrm{1}:\:{a},{b},{c}\in\mathbb{E}\Rightarrow{a}\left({prime}\right)=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:{b}=\mathrm{2}{m},{c}=\mathrm{2}{n}\:;\:{m},{n}\in\mathbb{Z}^{+} \\ $$$$\:\:\:{s}=\left(\mathrm{2}+\mathrm{2}{m}+\mathrm{2}{n}\right)/\mathrm{2}={m}+{n}+\mathrm{1} \\ $$$$\:\:\:{s}−{a}=\mathrm{1}+{m}+{n}−\mathrm{2}={m}+{n}−\mathrm{1} \\ $$$$\:\:\:{s}−{b}=\mathrm{1}+{m}+{n}−\mathrm{2}{m}=−{m}+{n}+\mathrm{1} \\ $$$$\:\:\:{s}−{c}=\mathrm{1}+{m}+{n}−\mathrm{2}{n}={m}−{n}+\mathrm{1} \\ $$$$\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}={a}+{b}+{c} \\ $$$$\blacktriangleright\sqrt{\left({m}+{n}+\mathrm{1}\right)\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{m}+\mathrm{2}{n}+\mathrm{2} \\ $$$$\blacktriangleright\:\left({m}+{n}+\mathrm{1}\right)\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}\left({m}+{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\blacktriangleright\:\left({m}+{n}−\mathrm{1}\right)\left(−{m}+{n}+\mathrm{1}\right)\left({m}−{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}\left({m}+{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:\left({o},{o}\right)-{case}:{m},{n}\in\mathbb{O} \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({o},{o}\right)-{case}:{m},{n}\in\mathbb{O}}\\\hline\end{array}\: \\ $$$$\:\:\:\:\mathrm{RHS}\:{is}\:{clearly}\:\boldsymbol{{even}}. \\ $$$$\:\:\:\:\:\mathrm{LHS}:\left({o}+{o}−{o}\right)\left(−{o}+{o}+{o}\right)\left({o}−{o}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({e}−{o}\right)\left({e}+{o}\right)\left({e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({o}\right)\left({o}\right)\left({o}\right)={o} \\ $$$$\:\:\:\:\:\:\mathrm{LHS}\:{is}\:\boldsymbol{{odd}}. \\ $$$$\:\:\:\:\:\:{Contradiction}. \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({e},{e}\right)-{case}:{m},{n}\in\mathbb{E}}\\\hline\end{array}\: \\ $$$$\:\:\:\:\:\:\mathrm{RHS}=\boldsymbol{{even}} \\ $$$$\:\:\:\:\mathrm{LHS}:\left({e}+{e}−{o}\right)\left(−{e}+{e}+{o}\right)\left({e}−{e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({e}−{o}\right)\left({e}+{o}\right)\left({e}+{o}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({o}\right)\left({o}\right)\left({o}\right)={o} \\ $$$$\:\:\:\:\:\:{Contradiction}. \\ $$$$\:\:\:\:\:\begin{array}{|c|}{\left({e},{o}\right)\:{or}\:\left({o},{e}\right)-{case}:{m}\in\mathbb{E},{n}\in\mathbb{O}}\\\hline\end{array}\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${Continue} \\ $$

Commented by talminator2856791 last updated on 26/Sep/21

 how did you put it in a box?

$$\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{put}\:\mathrm{it}\:\mathrm{in}\:\mathrm{a}\:\mathrm{box}? \\ $$

Commented by Rasheed.Sindhi last updated on 26/Sep/21

  The  manu that appears on click  of matrix- button contains table  with borders.I′ve deleted its row/s  except one which I′ve used as box.

$$\:\:{The}\:\:{manu}\:{that}\:{appears}\:{on}\:{click} \\ $$$${of}\:{matrix}-\:{button}\:{contains}\:\boldsymbol{{table}} \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{borders}}.{I}'{ve}\:{deleted}\:{its}\:{row}/{s} \\ $$$${except}\:{one}\:{which}\:{I}'{ve}\:{used}\:{as}\:{box}. \\ $$

Commented by talminator2856791 last updated on 05/Oct/21

 how to delete the rows?

$$\:\mathrm{how}\:\mathrm{to}\:\mathrm{delete}\:\mathrm{the}\:\mathrm{rows}? \\ $$

Commented by Rasheed.Sindhi last updated on 05/Oct/21

When you are in a row (that you want  to delete)open side mau and click  ′delete row′.

$${When}\:{you}\:{are}\:{in}\:{a}\:{row}\:\left({that}\:{you}\:{want}\right. \\ $$$$\left.{to}\:{delete}\right){open}\:{side}\:{mau}\:{and}\:{click} \\ $$$$'{delete}\:{row}'. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com