Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 155293 by peter frank last updated on 28/Sep/21

Answered by mr W last updated on 28/Sep/21

Commented by mr W last updated on 28/Sep/21

T_1 =T_2 =T_3 =T=membrane tension  p_1 ,p_2 ,p_3 =resultant pressure on membrane  p_1 =((2T_1 )/r_1 )  p_2 =((2T_2 )/r_2 )  p_3 =((2T_3 )/r_3 )  p_3 =p_1 −p_2   ((2T_3 )/r_3 )=((2T_1 )/r_1 )−((2T_2 )/r_2 )  ⇒(1/r_3 )=(1/r_1 )−(1/r_2 )=((r_2 −r_1 )/(r_1 r_2 ))  ⇒r_3 =r=((r_1 r_2 )/(r_2 −r_1 ))

$${T}_{\mathrm{1}} ={T}_{\mathrm{2}} ={T}_{\mathrm{3}} ={T}={membrane}\:{tension} \\ $$$${p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,{p}_{\mathrm{3}} ={resultant}\:{pressure}\:{on}\:{membrane} \\ $$$${p}_{\mathrm{1}} =\frac{\mathrm{2}{T}_{\mathrm{1}} }{{r}_{\mathrm{1}} } \\ $$$${p}_{\mathrm{2}} =\frac{\mathrm{2}{T}_{\mathrm{2}} }{{r}_{\mathrm{2}} } \\ $$$${p}_{\mathrm{3}} =\frac{\mathrm{2}{T}_{\mathrm{3}} }{{r}_{\mathrm{3}} } \\ $$$${p}_{\mathrm{3}} ={p}_{\mathrm{1}} −{p}_{\mathrm{2}} \\ $$$$\frac{\mathrm{2}{T}_{\mathrm{3}} }{{r}_{\mathrm{3}} }=\frac{\mathrm{2}{T}_{\mathrm{1}} }{{r}_{\mathrm{1}} }−\frac{\mathrm{2}{T}_{\mathrm{2}} }{{r}_{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{{r}_{\mathrm{3}} }=\frac{\mathrm{1}}{{r}_{\mathrm{1}} }−\frac{\mathrm{1}}{{r}_{\mathrm{2}} }=\frac{{r}_{\mathrm{2}} −{r}_{\mathrm{1}} }{{r}_{\mathrm{1}} {r}_{\mathrm{2}} } \\ $$$$\Rightarrow{r}_{\mathrm{3}} ={r}=\frac{{r}_{\mathrm{1}} {r}_{\mathrm{2}} }{{r}_{\mathrm{2}} −{r}_{\mathrm{1}} } \\ $$

Commented by peter frank last updated on 28/Sep/21

thank you very much.  but soap bubble has two surface  ((4T)/r)

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}. \\ $$$$\mathrm{but}\:\mathrm{soap}\:\mathrm{bubble}\:\mathrm{has}\:\mathrm{two}\:\mathrm{surface} \\ $$$$\frac{\mathrm{4T}}{\mathrm{r}} \\ $$

Commented by mr W last updated on 28/Sep/21

i refere to the resultant force as if  it is a membrane like a balloon.

$${i}\:{refere}\:{to}\:{the}\:{resultant}\:{force}\:{as}\:{if} \\ $$$${it}\:{is}\:{a}\:{membrane}\:{like}\:{a}\:{balloon}. \\ $$

Commented by peter frank last updated on 28/Sep/21

okay.

$$\mathrm{okay}. \\ $$

Commented by Tawa11 last updated on 28/Sep/21

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Answered by peter frank last updated on 28/Sep/21

Commented by peter frank last updated on 28/Sep/21

S=common interface  H=outside pressure  P_1 &P_2 =inside pressure for small  and large bubble  γ=surface tension  For small bubble  P_1 −H=((4γ)/r_1 )   ....(i)  For large bubble   P_2 −H=((4γ)/r_2 )....(ii)  For the interface  P_1 −P_2 =((4γ)/r) ....(iii)  (i)−(ii)  P_1 −P_2 =((4γ)/r_1 )−((4γ)/r_2 )  but   P_1 −P_2 =((4γ)/r)   ((4γ)/r) =((4γ)/r_1 )−((4γ)/r_2 )  (1/r) =(1/r_1 )−(1/r_2 )  r=((r_1 r_2 )/(r_(2 −) r_1 ))

$$\mathrm{S}=\mathrm{common}\:\mathrm{interface} \\ $$$$\mathrm{H}=\mathrm{outside}\:\mathrm{pressure} \\ $$$$\mathrm{P}_{\mathrm{1}} \&\mathrm{P}_{\mathrm{2}} =\mathrm{inside}\:\mathrm{pressure}\:\mathrm{for}\:\mathrm{small} \\ $$$$\mathrm{and}\:\mathrm{large}\:\mathrm{bubble} \\ $$$$\gamma=\mathrm{surface}\:\mathrm{tension} \\ $$$$\underline{\boldsymbol{{For}}\:\boldsymbol{{small}}\:\boldsymbol{{bubble}}} \\ $$$$\mathrm{P}_{\mathrm{1}} −\mathrm{H}=\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{1}} }\:\:\:....\left(\mathrm{i}\right) \\ $$$$\underline{\boldsymbol{{For}}\:\boldsymbol{{large}}\:\boldsymbol{{bubble}}\:} \\ $$$$\mathrm{P}_{\mathrm{2}} −\mathrm{H}=\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{2}} }....\left(\mathrm{ii}\right) \\ $$$$\underline{\boldsymbol{{For}}\:\boldsymbol{{the}}\:\boldsymbol{{interface}}} \\ $$$$\mathrm{P}_{\mathrm{1}} −\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{4}\gamma}{\mathrm{r}}\:....\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{i}\right)−\left(\mathrm{ii}\right) \\ $$$$\mathrm{P}_{\mathrm{1}} −\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{1}} }−\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{2}} } \\ $$$$\mathrm{but}\:\:\:\mathrm{P}_{\mathrm{1}} −\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{4}\gamma}{\mathrm{r}}\: \\ $$$$\frac{\mathrm{4}\gamma}{\mathrm{r}}\:=\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{1}} }−\frac{\mathrm{4}\gamma}{\mathrm{r}_{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{r}}\:=\frac{\mathrm{1}}{\mathrm{r}_{\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{r}_{\mathrm{2}} } \\ $$$$\mathrm{r}=\frac{\mathrm{r}_{\mathrm{1}} \mathrm{r}_{\mathrm{2}} }{\mathrm{r}_{\mathrm{2}\:−} \mathrm{r}_{\mathrm{1}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com