Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155310 by SANOGO last updated on 28/Sep/21

lim    U_n =Σ_(k=o) ^(n−1)   ((n(ln(n+k))−ln(n))/(n^2 +k^2 ))

$$\mathrm{lim}\:\:\:\:{U}_{{n}} =\underset{{k}={o}} {\overset{{n}−\mathrm{1}} {\sum}}\:\:\frac{{n}\left({ln}\left({n}+{k}\right)\right)−{ln}\left({n}\right)}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$

Answered by puissant last updated on 28/Sep/21

lim_(x→∞) U_n  = Σ_(k=0) ^(n−1) ((n(ln(((n+k)/n))))/(n^2 +k^2 ))  ⇒ lim_(x→∞)  U_n =lim_(x→∞) (1/n)Σ_(k=0) ^(n−1) ((ln(1+((k/n))))/(1+((k/n))^2 ))  qui est sous la formelim_(x→∞)  ((b−a)/n)Σ_(k=0) ^(n−1) f(a+k((b−a)/n))  qui est une Integrale de Riemann,et donne alors:  lim_(x→∞)  U_n  = ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx = Q  x=tant → Q=∫_0 ^(π/4) ((ln(1+tant))/((1+tan^2 t)))(1+tan^2 t)dt  =∫_0 ^(π/4) ln(1+tant)dt ; u=(π/4)−t→dt=−du  ⇒ Q=∫_0 ^(π/4) ln((2/(1+tanu)))du = ∫_0 ^(π/4) ln2du−Q  ⇒ 2Q=∫_0 ^(π/4) ln2 du ⇒ Q=(π/8)ln2...      lim_(x→∞)  U_n  = Σ_(k=0) ^(n−1) ((n(ln(n+k)−ln(n)))/(n^2 +k^2 )) = (π/8)ln2..                        ∵∴......Le puissant........

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{U}_{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{n}\left({ln}\left(\frac{{n}+{k}}{{n}}\right)\right)}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} =\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{ln}\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)\right)}{\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} } \\ $$$${qui}\:{est}\:{sous}\:{la}\:{forme}\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{b}−{a}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{f}\left({a}+{k}\frac{{b}−{a}}{{n}}\right) \\ $$$${qui}\:{est}\:{une}\:{Integrale}\:{de}\:{Riemann},{et}\:{donne}\:{alors}: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\:{Q} \\ $$$${x}={tant}\:\rightarrow\:{Q}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tant}\right)}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)}\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tant}\right){dt}\:;\:{u}=\frac{\pi}{\mathrm{4}}−{t}\rightarrow{dt}=−{du} \\ $$$$\Rightarrow\:{Q}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tanu}}\right){du}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}{du}−{Q} \\ $$$$\Rightarrow\:\mathrm{2}{Q}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{du}\:\Rightarrow\:{Q}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}... \\ $$$$ \\ $$$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{n}\left({ln}\left({n}+{k}\right)−{ln}\left({n}\right)\right)}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} }\:=\:\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\because\therefore......\mathscr{L}{e}\:{puissant}........ \\ $$

Commented by SANOGO last updated on 28/Sep/21

tu est vraiment puissant merci

$${tu}\:{est}\:{vraiment}\:{puissant}\:{merci} \\ $$

Commented by Tawa11 last updated on 28/Sep/21

nice sir

$$\mathrm{nice}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com