Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 15543 by RasheedSoomro last updated on 11/Jun/17

Q#13724 Reposted.  E_  ^  xpansion of 1000!  has 24  0′s at the end. Find  the first non- zero digit   from right.  1000!=....d0000...0  What is the the value of d?

You can't use 'macro parameter character #' in math modeExpansionof1000!has240sattheend.Findthefirstnonzerodigitfromright.1000!=....d0000...0Whatisthethevalueofd?

Answered by RasheedSoomro last updated on 11/Jun/17

Used   results:  (5k+1)(5k+2)(5k+3)(5k+4)≡4(mod 10)  (((5k+1)(5k+2)(5k+3)(5k+4))/2)≡2(mod 10)  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Expansion of 1000! has 249  0′s at the end.  Let p=((1000!)/(10^(249) )), p has no 0 at the end.  p=((1000!)/(2^(249) ×5^(249) ))  We can write  5^(249) =5×((10)/2)×((15)/3)×...((965)/(193))×...((985)/(197))×((990)/(2.3^2 .11))×.((995)/(199))×((1000)/2^3 )          =((5.10.15....1000)/(2^α_2  ×3^α_3  ×7^α_7  ×...193^α_(193)  ×197^α_(197)  ×199^α_(199)  ))  α_2 =⌊((1000)/(10))⌋+⌊((1000)/(20))⌋+⌊((1000)/(40))⌋+⌊((1000)/(80))⌋+⌊((1000)/(160))⌋+⌊((1000)/(320))⌋+⌊((1000)/(640))⌋     =100+50+25+12+6+3+1=197  α_3 =⌊((1000)/(15))⌋+⌊((1000)/(45))⌋+⌊((1000)/(135))⌋+⌊((1000)/(405))⌋=66+22+7+2=97  By same formula  α_7 =32,α_(11) =19,α_(13) =16 , α_(17) =11,α_(19) =10 , α_(23) =8,  α_(29) =α_(31) =6,α_(37) =5 , α_(41) =α_(43) =α_(47) =4,α_(53) =α_(59) =α_(61) =3,  α_(67) =α_(71) =α_(73) =α_(79) =α_(83) =α_(89) =α_(97) =2  α_(101) =α_(103) =…=α_(199) =1  Hence         5^(249) =((5.10.15....1000)/(2^(197) .3^(97) .7^(32) ...199^1 ))  So       p=((1000!)/(2^(249) ×5^(249) ))=((1000!)/(2^(249) ×(((5.10.15....1000)/(2^(197) .3^(97) .7^(32) ...199^1 )))))       p=((1000!)/(2^(249) ×5^(249) ))=((1000!)/(2^(52) ×(((5.10.15....1000)/(3^(97) .7^(32) ...199^1 )))))     p=(3^(97) .7^(32) ...199^1 )(((1000!)/(2^(52) (5.10...1000)))  p=(3^(97) .7^(32) ...199^1 ){(((1.2.3.4)/2))(6...9)(11....14)(((16...19)/2))}           ×{(21...24)(26....29)(31...34)(((36...39)/2))}             ×...×{(981...984)(986...989)(991...994)(((996...999)/2))}  Now we can see that  3^(97) ≡3,7^(32) ≡1,11^(19) ≡1,13^(16) ≡1,17^(11) ≡3,19^(10) ≡1,23^8 ≡1    Continue

Usedresults:(5k+1)(5k+2)(5k+3)(5k+4)4(mod10)(5k+1)(5k+2)(5k+3)(5k+4)22(mod10)Expansionof1000!has2490sattheend.Letp=1000!10249,phasno0attheend.p=1000!2249×5249Wecanwrite5249=5×102×153×...965193×...985197×9902.32.11×.995199×100023=5.10.15....10002α2×3α3×7α7×...193α193×197α197×199α199α2=100010+100020+100040+100080+1000160+1000320+1000640=100+50+25+12+6+3+1=197α3=100015+100045+1000135+1000405=66+22+7+2=97Bysameformulaα7=32,α11=19,α13=16,α17=11,α19=10,α23=8,α29=α31=6,α37=5,α41=α43=α47=4,α53=α59=α61=3,α67=α71=α73=α79=α83=α89=α97=2α101=α103==α199=1Hence5249=5.10.15....10002197.397.732...1991Sop=1000!2249×5249=1000!2249×(5.10.15....10002197.397.732...1991)p=1000!2249×5249=1000!252×(5.10.15....1000397.732...1991)p=(397.732...1991)(1000!252(5.10...1000)p=(397.732...1991){(1.2.3.42)(6...9)(11....14)(16...192)}×{(21...24)(26....29)(31...34)(36...392)}×...×{(981...984)(986...989)(991...994)(996...9992)}Nowwecanseethat3973,7321,11191,13161,17113,19101,2381Continue

Commented by tawa tawa last updated on 11/Jun/17

Weldone sir.

Weldonesir.

Commented by RasheedSoomro last updated on 12/Jun/17

Thanks miss tawa. pl see  also my other answer.

Thanksmisstawa.plseealsomyotheranswer.

Answered by RasheedSoomro last updated on 12/Jun/17

NEW    APPROACH_(−)  (The simplest approach)  Used results  (5k+1)(5k+2)(5k+3)(5k+4)≡4(mod 10)  (((5k+1)(5k+2)(5k+3)(5k+4))/2)≡2(mod 10)  2^(4k+1) ≡2(mod 10)  4^(2k) ≡6(mod 10)  −−−−−−−−−−−−−−−−−−−−−−−−  Expansion of 1000! has 249    0′s at the end  p=((1000!)/(10^(249) )) has no zero at the end.  Let f(n)=n!  f(1000)=1000!=(1...4)(5...9)...(996...999)(5.10.15...1000)    =(1...4)(6...9)...(996...999).5^(200) .(1.2.3...200)    =5^(200) (1...4)(6...9)...(996...999)×f(200)    f(200)=(1...4)(6...9)...(196...l99)(5.10...200)                  =5^(40) (1...4)(6...9)...(196...l99)(1.2...40)                  =5^(40) (1...4)(6...9)...(196...l99)×f(40)  f(40)=(1...4)(6...9)...(36...39)(5.10...40)              =5^8 (1...4)(6...9)...(36...39)(1.2...8)              =5^8 (1...4)(6...9)...(36...39)×f(8)  f(8)=(1.2.3.4)(5.6.7.8)(5)             =5(1.2.3.4)(6.7.8)    f(1000)=5^(200) (1...4)(6...9)...(996...999)                          ×5^(40) (1...4)(6...9)...(196...l99)                                ×5^8 (1...4)(6...9)...(36...39)                                        ×5(1...4)(6.7.8)                  =5^(249) (1...4)^4 (6...9)^3 (6.7.8)...(36...39)^3                          ×(41...44)^2 ...(196...199)^2                               ×(201...204)...(996...999)  p=((f(1000))/(2^(249) .5^(249) ))                  =((1/2^(249) ))(6.7.8)(1...4)^4 (6...9)^3 (11...14)^3 ...(36...39)^3                       ×(41...44)^2 (46...49)^2 ...(196...199)^2                            ×(201...204)...(996...999)                 ={(1...4)(6...9)...(996...999)}                  =(6.7.8)(          =((1/2^(249) )){(1...4)...(36....39)^(8 brackets) }^3                      ×{(41...44)...(196...199)^(32 brackets) }^2                          ×{(201...204)...(996...999)^(180 brackets) }                             ×{(1...4)(6.7.8}  Total number of brackets =8×3+32×2+180+2=270  Any of 249 brackets could be given 2 as denominator  (((∗.∗.∗.∗)/2))≡2(mod 10)   [249 congruences]  (∗.∗.∗.∗)≡4(mod 10)    [ 20 congruences]  6.7.8≡6(mod 10)            [ 1  congruence]  Multiplying above congruences  p≡2^(249•) .4^(20∗) .6(mod 2)     ≡2.6.6(mod 10)     ≡2(mod 10

NEWAPPROACH(Thesimplestapproach)Usedresults(5k+1)(5k+2)(5k+3)(5k+4)4(mod10)(5k+1)(5k+2)(5k+3)(5k+4)22(mod10)24k+12(mod10)42k6(mod10)Expansionof1000!has2490sattheendp=1000!10249hasnozeroattheend.Letf(n)=n!f(1000)=1000!=(1...4)(5...9)...(996...999)(5.10.15...1000)=(1...4)(6...9)...(996...999).5200.(1.2.3...200)=5200(1...4)(6...9)...(996...999)×f(200)f(200)=(1...4)(6...9)...(196...l99)(5.10...200)=540(1...4)(6...9)...(196...l99)(1.2...40)=540(1...4)(6...9)...(196...l99)×f(40)f(40)=(1...4)(6...9)...(36...39)(5.10...40)=58(1...4)(6...9)...(36...39)(1.2...8)=58(1...4)(6...9)...(36...39)×f(8)f(8)=(1.2.3.4)(5.6.7.8)(5)=5(1.2.3.4)(6.7.8)f(1000)=5200(1...4)(6...9)...(996...999)×540(1...4)(6...9)...(196...l99)×58(1...4)(6...9)...(36...39)×5(1...4)(6.7.8)=5249(1...4)4(6...9)3(6.7.8)...(36...39)3×(41...44)2...(196...199)2×(201...204)...(996...999)p=f(1000)2249.5249=(12249)(6.7.8)(1...4)4(6...9)3(11...14)3...(36...39)3×(41...44)2(46...49)2...(196...199)2×(201...204)...(996...999)={(1...4)(6...9)...(996...999)}=(6.7.8)(=(12249){(1...4)...(36....39)8brackets}3×{(41...44)...(196...199)32brackets}2×{(201...204)...(996...999)180brackets}×{(1...4)(6.7.8}Totalnumberofbrackets=8×3+32×2+180+2=270Anyof249bracketscouldbegiven2asdenominator(...2)2(mod10)[249congruences](...)4(mod10)[20congruences]6.7.86(mod10)[1congruence]Multiplyingabovecongruencesp2249.420.6(mod2)2.6.6(mod10)2(mod10

Commented by mrW1 last updated on 12/Jun/17

I appreciate very that you never stop  before the solution is found!

Iappreciateverythatyouneverstopbeforethesolutionisfound!

Commented by tawa tawa last updated on 12/Jun/17

Wow , kudox sir.

Wow,kudoxsir.

Commented by mrW1 last updated on 12/Jun/17

CONGRATULATION SIR!

CONGRATULATIONSIR!

Commented by RasheedSoomro last updated on 12/Jun/17

THαnks  SIR!  A part of your congratulation  returns to you, because it is  based on a result proved by you!

THαnksSIR!Apartofyourcongratulationreturnstoyou,becauseitisbasedonaresultprovedbyyou!

Commented by mrW1 last updated on 12/Jun/17

Can you find the last non−zero digit  of 2000! using your method?

Canyoufindthelastnonzerodigitof2000!usingyourmethod?

Commented by RasheedSoomro last updated on 12/Jun/17

I think I can sir.

IthinkIcansir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com