Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155450 by SANOGO last updated on 30/Sep/21

Answered by Kamel last updated on 30/Sep/21

L=lim_(n→+∞) e^((2/(2n))Σ_(k=1) ^(2n−1) Ln(sin(((kπ)/(2n))))) =e^(2∫_0 ^1 Ln(sin(πx))dx) =e^(−2Ln(2)) =(1/4)

L=limen+22n2n1k=1Ln(sin(kπ2n))=e201Ln(sin(πx))dx=e2Ln(2)=14

Commented by SANOGO last updated on 01/Oct/21

merci bien

mercibien

Answered by Ar Brandon last updated on 30/Sep/21

L=lim_(n→∞) (sin(π/(2n))sin((2π)/(2n))sin((3π)/(2n))∙∙∙sin((2(n−1)π)/(2n)))^(1/n)   lnL=lim_(n→∞) (1/n)Σ_(k=1) ^(2n−1) ln(sin((kπ)/(2n)))=∫_0 ^2 ln(sin(x/2)π)dx           =(2/π)∫_0 ^π ln(sinu)du=(4/π)∫_0 ^(π/2) ln(sinu)du            =−(4/π)∙((πln2)/2)=−2ln2 ⇒L=e^(−2ln2) =e^(ln(1/4)) =(1/4)

L=limn(sinπ2nsin2π2nsin3π2nsin2(n1)π2n)1nlnL=limn1n2n1k=1ln(sinkπ2n)=02ln(sinx2π)dx=2π0πln(sinu)du=4π0π2ln(sinu)du=4ππln22=2ln2L=e2ln2=eln14=14

Commented by SANOGO last updated on 01/Oct/21

merci bien

mercibien

Terms of Service

Privacy Policy

Contact: info@tinkutara.com