Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155495 by mathdanisur last updated on 01/Oct/21

if  a;b;c;d∈R  verify  a+2b+3c+4d=6  then find  min(a^2 +b^2 +c^2 +d^2 )

$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d}\in\mathbb{R}\:\:\mathrm{verify}\:\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}+\mathrm{4d}=\mathrm{6} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\boldsymbol{\mathrm{min}}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} \right) \\ $$

Answered by mr W last updated on 01/Oct/21

(a^2 +b^2 +c^2 +d^2 )_(min) =((6/( (√(1^2 +2^2 +3^2 +4^2 )))))^2 =(6/5)

$$\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} \right)_{{min}} =\left(\frac{\mathrm{6}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }}\right)^{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{5}} \\ $$

Commented by mathdanisur last updated on 01/Oct/21

Thanlyou Ser, can you tell me how this  part was obtained, if possible

$$\mathrm{Thanlyou}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{can}\:\mathrm{you}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{how}\:\mathrm{this} \\ $$$$\mathrm{part}\:\mathrm{was}\:\mathrm{obtained},\:\mathrm{if}\:\mathrm{possible} \\ $$

Commented by mr W last updated on 01/Oct/21

(√(x^2 +y^2 +z^2 +w^2 )) is the distance from  point (x,y,z,w) to the origin (0,0,0,0)  in the 4D space.   x+2y+3z+4w=6 is an plane in the  4D space.   the shortest distance from a point  (x,y,z,w) on this plane to the origin is  ((√(x^2 +y^2 +z^2 +w^2 )))_(min) =((∣0+2×0+3×0+4×0−6∣)/( (√(1^2 +2^2 +3^2 +4^4 ))))=(6/( (√(30))))  therefore  (a^2 +b^2 +c^2 +d^2 )_(min) =((√(a^2 +b^2 +c^2 +d^2 )))_(min) ^2   =((6/( (√(30)))))^2 =(6/5)

$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{w}^{\mathrm{2}} }\:{is}\:{the}\:{distance}\:{from} \\ $$$${point}\:\left({x},{y},{z},{w}\right)\:{to}\:{the}\:{origin}\:\left(\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$$${in}\:{the}\:\mathrm{4}{D}\:{space}.\: \\ $$$${x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{4}{w}=\mathrm{6}\:{is}\:{an}\:{plane}\:{in}\:{the} \\ $$$$\mathrm{4}{D}\:{space}.\: \\ $$$${the}\:{shortest}\:{distance}\:{from}\:{a}\:{point} \\ $$$$\left({x},{y},{z},{w}\right)\:{on}\:{this}\:{plane}\:{to}\:{the}\:{origin}\:{is} \\ $$$$\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{w}^{\mathrm{2}} }\right)_{{min}} =\frac{\mid\mathrm{0}+\mathrm{2}×\mathrm{0}+\mathrm{3}×\mathrm{0}+\mathrm{4}×\mathrm{0}−\mathrm{6}\mid}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{4}} }}=\frac{\mathrm{6}}{\:\sqrt{\mathrm{30}}} \\ $$$${therefore} \\ $$$$\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)_{{min}} =\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }\right)_{{min}} ^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{6}}{\:\sqrt{\mathrm{30}}}\right)^{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{5}} \\ $$

Commented by mathdanisur last updated on 01/Oct/21

Creativ solution thank you Ser

$$\mathrm{Creativ}\:\mathrm{solution}\:\mathrm{thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com