Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155496 by mathocean1 last updated on 01/Oct/21

Given I_n =∫_(nπ) ^((n+1)π) e^(−x) sinx dx , n∈N.  1. Find a relation between I_(n+1) and I_n .

GivenIn=(n+1)πnπexsinxdx,nN.1.FindarelationbetweenIn+1andIn.

Answered by ArielVyny last updated on 01/Oct/21

I_n =∫_(nπ) ^((n+1)π) e^(−x) sinxdx  du=e^(−x) →u=−e^(−x)   v=sinx→dv=cosx  I_n =[−e^(−x) sinx]_(nπ) ^((n+1)π) +∫_(nπ) ^((n+1)) e^(−x) cosxdx  du=e^(−x) →u=−e^(−x)   v=cosx→dv=−sinx  2I_n =−[e^(−x) sinx+e^(−x) cosx]_(nπ) ^((n+1)π)   2I_n =−[e^(−π(n+1)) sin((n+1)π)+e^(−π(n+1)) cos((n+1)π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[e^(−π(n+1)) (sin(nπ)cosπ+cos(nπ)sinπ)+e^(−π(n+1)) (cosnπcosπ+sin(nπ)sin(π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[−e^(−π(n+1)) (−1)^n −e^(−nπ) (−1)^n ]  2I_n =(−1)^n e^(−π(n+1)) +(−1)^n e^(−nπ)   2I_(n+1) =(−1)^(n+1) e^(−π(n+2)) +(−1)^n e^(−(n+1)π)   2I_(n+1) −2I_n =(−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ)   I_(n+1) −I_n =(((−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ) )/2)

In=nπ(n+1)πexsinxdxdu=exu=exv=sinxdv=cosxIn=[exsinx]nπ(n+1)π+nπ(n+1)excosxdxdu=exu=exv=cosxdv=sinx2In=[exsinx+excosx]nπ(n+1)π2In=[eπ(n+1)sin((n+1)π)+eπ(n+1)cos((n+1)π)enπsin(nπ)enπcos(nπ)]2In=[eπ(n+1)(sin(nπ)cosπ+cos(nπ)sinπ)+eπ(n+1)(cosnπcosπ+sin(nπ)sin(π)enπsin(nπ)enπcos(nπ)]2In=[eπ(n+1)(1)nenπ(1)n]2In=(1)neπ(n+1)+(1)nenπ2In+1=(1)n+1eπ(n+2)+(1)ne(n+1)π2In+12In=(1)n+1eπ(n+2)+(1)n+1enπIn+1In=(1)n+1eπ(n+2)+(1)n+1enπ2

Commented by mathocean1 last updated on 22/Oct/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com