Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155496 by mathocean1 last updated on 01/Oct/21

Given I_n =∫_(nπ) ^((n+1)π) e^(−x) sinx dx , n∈N.  1. Find a relation between I_(n+1) and I_n .

$${Given}\:{I}_{{n}} =\underset{{n}\pi} {\overset{\left({n}+\mathrm{1}\right)\pi} {\int}}{e}^{−{x}} {sinx}\:{dx}\:,\:{n}\in\mathbb{N}. \\ $$$$\mathrm{1}.\:{Find}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{1}} {and}\:{I}_{{n}} . \\ $$

Answered by ArielVyny last updated on 01/Oct/21

I_n =∫_(nπ) ^((n+1)π) e^(−x) sinxdx  du=e^(−x) →u=−e^(−x)   v=sinx→dv=cosx  I_n =[−e^(−x) sinx]_(nπ) ^((n+1)π) +∫_(nπ) ^((n+1)) e^(−x) cosxdx  du=e^(−x) →u=−e^(−x)   v=cosx→dv=−sinx  2I_n =−[e^(−x) sinx+e^(−x) cosx]_(nπ) ^((n+1)π)   2I_n =−[e^(−π(n+1)) sin((n+1)π)+e^(−π(n+1)) cos((n+1)π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[e^(−π(n+1)) (sin(nπ)cosπ+cos(nπ)sinπ)+e^(−π(n+1)) (cosnπcosπ+sin(nπ)sin(π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[−e^(−π(n+1)) (−1)^n −e^(−nπ) (−1)^n ]  2I_n =(−1)^n e^(−π(n+1)) +(−1)^n e^(−nπ)   2I_(n+1) =(−1)^(n+1) e^(−π(n+2)) +(−1)^n e^(−(n+1)π)   2I_(n+1) −2I_n =(−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ)   I_(n+1) −I_n =(((−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ) )/2)

$${I}_{{n}} =\int_{{n}\pi} ^{\left({n}+\mathrm{1}\right)\pi} {e}^{−{x}} {sinxdx} \\ $$$${du}={e}^{−{x}} \rightarrow{u}=−{e}^{−{x}} \\ $$$${v}={sinx}\rightarrow{dv}={cosx} \\ $$$${I}_{{n}} =\left[−{e}^{−{x}} {sinx}\right]_{{n}\pi} ^{\left({n}+\mathrm{1}\right)\pi} +\int_{{n}\pi} ^{\left({n}+\mathrm{1}\right)} {e}^{−{x}} {cosxdx} \\ $$$${du}={e}^{−{x}} \rightarrow{u}=−{e}^{−{x}} \\ $$$${v}={cosx}\rightarrow{dv}=−{sinx} \\ $$$$\mathrm{2}{I}_{{n}} =−\left[{e}^{−{x}} {sinx}+{e}^{−{x}} {cosx}\right]_{{n}\pi} ^{\left({n}+\mathrm{1}\right)\pi} \\ $$$$\mathrm{2}{I}_{{n}} =−\left[{e}^{−\pi\left({n}+\mathrm{1}\right)} {sin}\left(\left({n}+\mathrm{1}\right)\pi\right)+{e}^{−\pi\left({n}+\mathrm{1}\right)} {cos}\left(\left({n}+\mathrm{1}\right)\pi\right)−{e}^{−{n}\pi} {sin}\left({n}\pi\right)−{e}^{−{n}\pi} {cos}\left({n}\pi\right)\right] \\ $$$$\mathrm{2}{I}_{{n}} =−\left[{e}^{−\pi\left({n}+\mathrm{1}\right)} \left({sin}\left({n}\pi\right){cos}\pi+{cos}\left({n}\pi\right){sin}\pi\right)+{e}^{−\pi\left({n}+\mathrm{1}\right)} \left({cosn}\pi{cos}\pi+{sin}\left({n}\pi\right){sin}\left(\pi\right)−{e}^{−{n}\pi} {sin}\left({n}\pi\right)−{e}^{−{n}\pi} {cos}\left({n}\pi\right)\right]\right. \\ $$$$\mathrm{2}{I}_{{n}} =−\left[−{e}^{−\pi\left({n}+\mathrm{1}\right)} \left(−\mathrm{1}\right)^{{n}} −{e}^{−{n}\pi} \left(−\mathrm{1}\right)^{{n}} \right] \\ $$$$\mathrm{2}{I}_{{n}} =\left(−\mathrm{1}\right)^{{n}} {e}^{−\pi\left({n}+\mathrm{1}\right)} +\left(−\mathrm{1}\right)^{{n}} {e}^{−{n}\pi} \\ $$$$\mathrm{2}{I}_{{n}+\mathrm{1}} =\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−\pi\left({n}+\mathrm{2}\right)} +\left(−\mathrm{1}\right)^{{n}} {e}^{−\left({n}+\mathrm{1}\right)\pi} \\ $$$$\mathrm{2}{I}_{{n}+\mathrm{1}} −\mathrm{2}{I}_{{n}} =\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−\pi\left({n}+\mathrm{2}\right)} +\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−{n}\pi} \\ $$$${I}_{{n}+\mathrm{1}} −{I}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−\pi\left({n}+\mathrm{2}\right)} +\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{−{n}\pi} }{\mathrm{2}} \\ $$

Commented by mathocean1 last updated on 22/Oct/21

thank you

$${thank}\:{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com