All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 155496 by mathocean1 last updated on 01/Oct/21
GivenIn=∫(n+1)πnπe−xsinxdx,n∈N.1.FindarelationbetweenIn+1andIn.
Answered by ArielVyny last updated on 01/Oct/21
In=∫nπ(n+1)πe−xsinxdxdu=e−x→u=−e−xv=sinx→dv=cosxIn=[−e−xsinx]nπ(n+1)π+∫nπ(n+1)e−xcosxdxdu=e−x→u=−e−xv=cosx→dv=−sinx2In=−[e−xsinx+e−xcosx]nπ(n+1)π2In=−[e−π(n+1)sin((n+1)π)+e−π(n+1)cos((n+1)π)−e−nπsin(nπ)−e−nπcos(nπ)]2In=−[e−π(n+1)(sin(nπ)cosπ+cos(nπ)sinπ)+e−π(n+1)(cosnπcosπ+sin(nπ)sin(π)−e−nπsin(nπ)−e−nπcos(nπ)]2In=−[−e−π(n+1)(−1)n−e−nπ(−1)n]2In=(−1)ne−π(n+1)+(−1)ne−nπ2In+1=(−1)n+1e−π(n+2)+(−1)ne−(n+1)π2In+1−2In=(−1)n+1e−π(n+2)+(−1)n+1e−nπIn+1−In=(−1)n+1e−π(n+2)+(−1)n+1e−nπ2
Commented by mathocean1 last updated on 22/Oct/21
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com