All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 155512 by mathdanisur last updated on 01/Oct/21
Ξ©=β«10tanβ1xβtanβ1(1x)1+x2β 1+x1βxdx=?
Answered by Kamel last updated on 01/Oct/21
Ξ©=β«01Arctan(x)βArctan(1x)1+x21+x1βxdx=β«01Arctan(x2β12x)1+x21+x1βxdx;t=1βx1+x=β2β«01Arctan(t)t(1+t2)dt=β2β«01Arctan(t)tdt+2β«01tArctan(t)1+t2dt=β2G+Ο4Ln(2)ββ«01Ln(1+t2)1+t2dtΞ©=β2G+Ο4Ln(2)+2β«0Ο4Ln(cos(x))dx=β2G+Ο4Ln(2)+2β«0Ο2Ln(cos(x))dxβ2β«0Ο4Ln(sin(x))dx=β2G+Ο4Ln(2)βΟLn(2)+Ο4Ln(2)+2β«0Ο4xcos(x)sin(x)dx=x=Arctan(t)β2GβΟ2Ln(2)+2β«01Arctan(t)t(1+t2)dt=βΞ©β΄Ξ©=β«01Arctan(x)βArctan(1x)1+x21+x1βxdx=βGβΟ4Ln(2)KAMELBENAICHA
Commented by mathdanisur last updated on 02/Oct/21
VeryniceSerthankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com