Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155512 by mathdanisur last updated on 01/Oct/21

𝛀 =∫_( 0) ^( 1)  ((tan^(-1) x - tan^(-1) ((1/x)))/(1 + x^2 )) βˆ™ ((1+x)/(1-x)) dx = ?

Ξ©=∫10tanβˆ’1xβˆ’tanβˆ’1(1x)1+x2β‹…1+x1βˆ’xdx=?

Answered by Kamel last updated on 01/Oct/21

  Ξ©=∫_0 ^1 ((Arctan(x)βˆ’Arctan((1/x)))/(1+x^2 )) ((1+x)/(1βˆ’x))dx      =∫_0 ^1 ((Arctan(((x^2 βˆ’1)/(2x))))/(1+x^2 )) ((1+x)/(1βˆ’x))dx; t=((1βˆ’x)/(1+x))      =βˆ’2∫_0 ^1 ((Arctan(t))/(t(1+t^2 )))dt=βˆ’2∫_0 ^1 ((Arctan(t))/t)dt+2∫_0 ^1 ((tArctan(t))/(1+t^2 ))dt      =βˆ’2G+(Ο€/4)Ln(2)βˆ’βˆ«_0 ^1 ((Ln(1+t^2 ))/(1+t^2 ))dt     Ξ© =βˆ’2G+(Ο€/4)Ln(2)+2∫_0 ^(Ο€/4) Ln(cos(x))dx          =βˆ’2G+(Ο€/4)Ln(2)+2∫_0 ^(Ο€/2) Ln(cos(x))dxβˆ’2∫_0 ^(Ο€/4) Ln(sin(x))dx          =βˆ’2G+(Ο€/4)Ln(2)βˆ’Ο€Ln(2)+(Ο€/4)Ln(2)+2∫_0 ^(Ο€/4) ((xcos(x))/(sin(x)))dx  =^(x=Arctan(t)) βˆ’2Gβˆ’(Ο€/2)Ln(2)+2∫_0 ^1 ((Arctan(t))/(t(1+t^2 )))dt^(=βˆ’Ξ©)   ∴  𝛀=∫_0 ^1 ((Arctan(x)βˆ’Arctan((1/x)))/(1+x^2 )) ((1+x)/(1βˆ’x))dx=βˆ’Gβˆ’(𝛑/4)Ln(2)                                                      KAMEL BENAICHA

Ξ©=∫01Arctan(x)βˆ’Arctan(1x)1+x21+x1βˆ’xdx=∫01Arctan(x2βˆ’12x)1+x21+x1βˆ’xdx;t=1βˆ’x1+x=βˆ’2∫01Arctan(t)t(1+t2)dt=βˆ’2∫01Arctan(t)tdt+2∫01tArctan(t)1+t2dt=βˆ’2G+Ο€4Ln(2)βˆ’βˆ«01Ln(1+t2)1+t2dtΞ©=βˆ’2G+Ο€4Ln(2)+2∫0Ο€4Ln(cos(x))dx=βˆ’2G+Ο€4Ln(2)+2∫0Ο€2Ln(cos(x))dxβˆ’2∫0Ο€4Ln(sin(x))dx=βˆ’2G+Ο€4Ln(2)βˆ’Ο€Ln(2)+Ο€4Ln(2)+2∫0Ο€4xcos(x)sin(x)dx=x=Arctan(t)βˆ’2Gβˆ’Ο€2Ln(2)+2∫01Arctan(t)t(1+t2)dt=βˆ’Ξ©βˆ΄Ξ©=∫01Arctan(x)βˆ’Arctan(1x)1+x21+x1βˆ’xdx=βˆ’Gβˆ’Ο€4Ln(2)KAMELBENAICHA

Commented by mathdanisur last updated on 02/Oct/21

Very nice Ser thank you

VeryniceSerthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com