Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155527 by ZiYangLee last updated on 01/Oct/21

If f(tan^2  (θ/2))= (2/(1+cos θ)) , find f(sin (θ/2)).

Iff(tan2θ2)=21+cosθ,findf(sinθ2).

Answered by Ar Brandon last updated on 01/Oct/21

f(tan^2 (ϑ/2))=(2/(1+cosϑ))  f(((sin^2 (ϑ/2))/(1−sin^2 (ϑ/2))))=(1/(1−sin^2 (ϑ/2))) ⇒f((x^2 /(1−x^2 )))=(1/(1−x^2 ))  (x^2 /(1−x^2 ))=y⇒(y+1)x^2 −y=0⇒x=±(√(y/(y+1)))  f(y)=(1/(1−(y/(y+1))))=((y+1)/1)=y+1 ⇒f(sin(ϑ/2))=sin(ϑ/2)+1

f(tan2ϑ2)=21+cosϑf(sin2ϑ21sin2ϑ2)=11sin2ϑ2f(x21x2)=11x2x21x2=y(y+1)x2y=0x=±yy+1f(y)=11yy+1=y+11=y+1f(sinϑ2)=sinϑ2+1

Answered by mr W last updated on 02/Oct/21

f(tan^2  (θ/2))=(2/(1+cos θ))=(2/(1+2 cos^2  (θ/2)−1))  f(tan^2  (θ/2))=(1/(cos^2  (θ/2)))=1+tan^2  (θ/2)  ⇒f(x)=1+x  f(sin (θ/2))=1+sin (θ/2)

f(tan2θ2)=21+cosθ=21+2cos2θ21f(tan2θ2)=1cos2θ2=1+tan2θ2f(x)=1+xf(sinθ2)=1+sinθ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com