All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 155527 by ZiYangLee last updated on 01/Oct/21
Iff(tan2θ2)=21+cosθ,findf(sinθ2).
Answered by Ar Brandon last updated on 01/Oct/21
f(tan2ϑ2)=21+cosϑf(sin2ϑ21−sin2ϑ2)=11−sin2ϑ2⇒f(x21−x2)=11−x2x21−x2=y⇒(y+1)x2−y=0⇒x=±yy+1f(y)=11−yy+1=y+11=y+1⇒f(sinϑ2)=sinϑ2+1
Answered by mr W last updated on 02/Oct/21
f(tan2θ2)=21+cosθ=21+2cos2θ2−1f(tan2θ2)=1cos2θ2=1+tan2θ2⇒f(x)=1+xf(sinθ2)=1+sinθ2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com