All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 155537 by SANOGO last updated on 01/Oct/21
Answered by amin96 last updated on 01/Oct/21
1)y=xrdydx=rxr−1d2ydx2={r2−r}xr−2x2×(r2−r)xr−2−3x×rxr−1+3×xr=0xr(r2−r)−3xrr+3xr=0⇒r2−r−3r+3=0r2−4r+3=0Δ=16−12=4>0{r1=4+22=3r2=4−22=1★yH=c1xr1+c2xr2⇒y=c1x3+c2x★−−−−−−−−−−−−−−−−−−−2){y=xrdydx=rxr−1d2ydx2=(r2−r)xr−2x2(r2−r)xr−2−3xr⋅xr−1r+13xr=0xr(r2−r)−3rxr+13xr=0r2−r−3r+13=0⇒r2−4r+13=0Δ=16−52=−36<0{r1=4+6i2=2+3ir2=2−3i⇒Re{r}=2=aIm{r}=3=bY=c1xacos(bln(x))+c2xasin(bln(x))★Y=c1x2cos(3ln(x))+c2x2sin(3ln(x))Koshi−Eulerdiferentialequationmath.Amin
Commented by SANOGO last updated on 02/Oct/21
mercibienlegeneral
Terms of Service
Privacy Policy
Contact: info@tinkutara.com