Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 155571 by peter frank last updated on 02/Oct/21

Find the cube root of one .Hence  show that the sum of the root is   equal to zero

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{one}\:.\mathrm{Hence} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root}\:\mathrm{is}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{zero} \\ $$

Answered by JDamian last updated on 02/Oct/21

z^3 =1  {z}={e^(i((2π)/3)k) }_(0≤k<3)   Σ_(k=0) ^2 e^(i((2π)/3)k) =Σ_(k=0) ^2 (e^(i((2π)/3)) )^k =(((e^(i((2π)/3)) )^3 −1)/(e^(i((2π)/3)) −1))=((e^(i2π) −1)/(e^(i((2π)/3)) −1))=  =((1−1)/(e^(i((2π)/3)) −1))=0

$${z}^{\mathrm{3}} =\mathrm{1} \\ $$$$\left\{{z}\right\}=\left\{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}{k}} \right\}_{\mathrm{0}\leqslant{k}<\mathrm{3}} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}{k}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\left({e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)^{{k}} =\frac{\left({e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)^{\mathrm{3}} −\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} −\mathrm{1}}=\frac{{e}^{{i}\mathrm{2}\pi} −\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} −\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}−\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} −\mathrm{1}}=\mathrm{0} \\ $$

Commented by peter frank last updated on 02/Oct/21

great sir ;thanks

$$\mathrm{great}\:\mathrm{sir}\:;\mathrm{thanks} \\ $$

Commented by puissant last updated on 02/Oct/21

Nice sir.. but it is rather k∈{0,1,2}..

$${Nice}\:{sir}..\:{but}\:{it}\:{is}\:{rather}\:{k}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2}\right\}.. \\ $$

Answered by puissant last updated on 02/Oct/21

z^3 =1 ⇒ z=e^(i((2kπ)/3))  ;  k∈[∣ 0;2 ∣]  → k=0 ⇒ z= 1  → k=1 ⇒ z=e^(i((2π)/3))   →k=2 ⇒ z=e^(i((4π)/3)) = e^(−i((2π)/3))   let j=e^(i((2π)/3))   1+j+j^2 = ((1−j^3 )/(1−j))= (((e^(i((2π)/3)) )^3 −1)/(e^(i((2π)/3)) −1))= 0...  −−−−−−−−−−−−−  j=e^(i((2π)/3))  = −(1/2)+((√3)/2)i and   j^2 =e^(i((4π)/3)) = e^(−i((2π)/3)) = −(1/2)−((√3)/2)i..  1+j+j^2 = 1−(1/2)+((√3)/2)i−(1/2)−((√3)/2)i=1−1=0  ⇒ 1+j+j^2 = 0...

$${z}^{\mathrm{3}} =\mathrm{1}\:\Rightarrow\:{z}={e}^{{i}\frac{\mathrm{2}{k}\pi}{\mathrm{3}}} \:;\:\:{k}\in\left[\mid\:\mathrm{0};\mathrm{2}\:\mid\right] \\ $$$$\rightarrow\:{k}=\mathrm{0}\:\Rightarrow\:{z}=\:\mathrm{1} \\ $$$$\rightarrow\:{k}=\mathrm{1}\:\Rightarrow\:{z}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\rightarrow{k}=\mathrm{2}\:\Rightarrow\:{z}={e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} =\:{e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${let}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\mathrm{1}+{j}+{j}^{\mathrm{2}} =\:\frac{\mathrm{1}−{j}^{\mathrm{3}} }{\mathrm{1}−{j}}=\:\frac{\left({e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)^{\mathrm{3}} −\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} −\mathrm{1}}=\:\mathrm{0}... \\ $$$$−−−−−−−−−−−−− \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\:{and}\: \\ $$$${j}^{\mathrm{2}} ={e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} =\:{e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} =\:−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}.. \\ $$$$\mathrm{1}+{j}+{j}^{\mathrm{2}} =\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}=\mathrm{1}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}+{j}+{j}^{\mathrm{2}} =\:\mathrm{0}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com