Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155576 by MathsFan last updated on 02/Oct/21

the polynomial 4x^3 +ax^2 +bx+9,  where a  and  b consant, is denoted by   f(x). when f(x) is divide by (x−2) the  remainder is r and when divided by   (x−3) the remaider is 6r. its further   given that (x+3) is a factor of f(x).   Show that b−a=14   and hence find a and b

thepolynomial4x3+ax2+bx+9,whereaandbconsant,isdenotedbyf(x).whenf(x)isdivideby(x2)theremainderisrandwhendividedby(x3)theremaideris6r.itsfurthergiventhat(x+3)isafactoroff(x).Showthatba=14andhencefindaandb

Commented by Rasheed.Sindhi last updated on 02/Oct/21

Are you sure sir/madam that         b−a=14  ?

Areyousuresir/madamthatba=14?

Commented by MathsFan last updated on 02/Oct/21

 not really sure sir. i tried but   didnt get b−a=14. thats why i   posted it on this platform for further   conviction from others

notreallysuresir.itriedbutdidntgetba=14.thatswhyiposteditonthisplatformforfurtherconvictionfromothers

Commented by Rasheed.Sindhi last updated on 03/Oct/21

I think b−a=−25 is correct.  (a=4,b=−21)

Ithinkba=25iscorrect.(a=4,b=21)

Answered by Rasheed.Sindhi last updated on 02/Oct/21

 { ((f(2)=4(2)^3 +a(2)^2 +b(2)+9=r)),((f(3)=4(3)^3 +a(3)^2 +b(3)+9=6r)),((f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0)) :}   { ((32+4a+2b+9=r⇒4a+2b=r−41)),((108+9a+3b+9=6r⇒9a+3b=6r−117)),((−108+9a−3b+9=0⇒3a−b=33)) :}  b=3a−33  4a+2b=r−41⇒4a+2(3a−33)=r−41       10a=r−41+66=r+25        r=10a−25  9a+3b=6r−117  ⇒9a+3(3a−33)=6(10a−25)−117      18a−99=60a−150−117       −42a=−168⇒a=((−168)/(−42))=4         b=3a−33=3(4)−33=−21        b=−21    b−a=−21−4=−25

{f(2)=4(2)3+a(2)2+b(2)+9=rf(3)=4(3)3+a(3)2+b(3)+9=6rf(3)=4(3)3+a(3)2+b(3)+9=0{32+4a+2b+9=r4a+2b=r41108+9a+3b+9=6r9a+3b=6r117108+9a3b+9=03ab=33b=3a334a+2b=r414a+2(3a33)=r4110a=r41+66=r+25r=10a259a+3b=6r1179a+3(3a33)=6(10a25)11718a99=60a15011742a=168a=16842=4b=3a33=3(4)33=21b=21ba=214=25

Commented by MathsFan last updated on 02/Oct/21

amazing

amazing

Answered by Rasheed.Sindhi last updated on 02/Oct/21

 determinant (((2)),4,a,b,9),(,,8,(2a+16),(4a+2b+32)),(,4,(a+8),(2a+b+16),(4a+2b+41=r...A)))    determinant (((3)),4,a,b,9),(,,(12),(3a+36),(9a+3b+108)),(,4,(a+12),(3a+b+36),(9a+3b+117=6r...B)))     determinant (((−3)),4,a,b,9),(,,(−12),(−3a+36),(9a−3b−108)),(,4,(a−12),(−3a+b+36),(9a−3b−99=0...C)))   C⇒3a−b=33⇒b=3a−33   B+C: 18a+18=6r⇒r=3a+3  A: 4a+2b+41=r        4a+2(3a−33)+41=3a+3        10a−66+41=3a+3         7a=3+25=28            a=4            b=3a−33=3(4)−33=−21  b−a=−21−4=−25

2)4ab982a+164a+2b+324a+82a+b+164a+2b+41=r...A3)4ab9123a+369a+3b+1084a+123a+b+369a+3b+117=6r...B3)4ab9123a+369a3b1084a123a+b+369a3b99=0...CC3ab=33b=3a33B+C:18a+18=6rr=3a+3A:4a+2b+41=r4a+2(3a33)+41=3a+310a66+41=3a+37a=3+25=28a=4b=3a33=3(4)33=21ba=214=25

Commented by MathsFan last updated on 02/Oct/21

thank you sir   but which approach is this

thankyousirbutwhichapproachisthis

Commented by Rasheed.Sindhi last updated on 02/Oct/21

This is  synthetic division approach

Thisissyntheticdivisionapproach

Commented by peter frank last updated on 02/Oct/21

thanks

thanks

Commented by Tawa11 last updated on 03/Oct/21

Great sir

Greatsir

Commented by Rasheed.Sindhi last updated on 03/Oct/21

You are certainly miss tawa,an  old forum-friend ?

Youarecertainlymisstawa,anoldforumfriend?

Answered by Rasheed.Sindhi last updated on 03/Oct/21

Verification :  a=4,b=−21  f(x)=4x^3 +4x^2 −21x+9  •When divided by x−2  f(2)=4(2)^3 +4(2)^2 −21(2)+9=r            =32+16−42+9=15=r  •When divided by x−3  f(3)=4(3)^3 +4(3)^2 −21(3)+9=6r       =108+36−63+9=90=6×15=6r  • x+3 is factor of f(x)   determinant (((−3)),4,(     4),(−21),(   9)),(,,(−12),(   24),(−9)),(,4,(  −8),(    3),(  0)))   4x^3 +4x^2 −21x+9                                 =(x+3)(4x^2 −8x+3)  V e r i f i e d

Verification:a=4,b=21f(x)=4x3+4x221x+9Whendividedbyx2f(2)=4(2)3+4(2)221(2)+9=r=32+1642+9=15=rWhendividedbyx3f(3)=4(3)3+4(3)221(3)+9=6r=108+3663+9=90=6×15=6rx+3isfactoroff(x)3)442191224948304x3+4x221x+9=(x+3)(4x28x+3)Verified

Answered by Rasheed.Sindhi last updated on 04/Oct/21

AnOther Way  ^• x+3 is factor of 4x^3 +ax^2 +bx+9.  Let other factor is 4x^2 +px+3  ∴ f(x)=(x+3)(4x^2 +px+3)          =4x^3 +(p+12)x^2 +(3p+3)x+9  Comparing coefficients  a=p+12⇒p=a−12,  b=3p+3=3(a−12)+3=3a−33  ∴ f(x)=4x^3 +ax^2 +(3a−33)x+9  ^• f(x) divided by x−2 leaving   remainder r  f(2)=4(2)^3 +a(2)^2 +(3a−33)(2)+9=r          =32+4a+6a−66+9=r           10a−25=r  ^• f(x) divided by x−3 leaving   remainder 6r  f(3)=4(3)^3 +a(3)^2 +(3a−33)(3)+9=6r       =108+9a+9a−99+9=6(10a−25)           18a+18=60a−150            42a=168⇒a=4            b=3a−33=3(4)−33=−21            b=−21           b−a=−21−4=−25

AnOtherWayx+3isfactorof4x3+ax2+bx+9.Letotherfactoris4x2+px+3f(x)=(x+3)(4x2+px+3)=4x3+(p+12)x2+(3p+3)x+9Comparingcoefficientsa=p+12p=a12,b=3p+3=3(a12)+3=3a33f(x)=4x3+ax2+(3a33)x+9f(x)dividedbyx2leavingremainderrf(2)=4(2)3+a(2)2+(3a33)(2)+9=r=32+4a+6a66+9=r10a25=rf(x)dividedbyx3leavingremainder6rf(3)=4(3)3+a(3)2+(3a33)(3)+9=6r=108+9a+9a99+9=6(10a25)18a+18=60a15042a=168a=4b=3a33=3(4)33=21b=21ba=214=25

Answered by ajfour last updated on 03/Oct/21

x=−3  ⇒  4(−27)+9a−3b=−9  ⇒  9a−3b=99    ..(i)  f(2)=r  ⇒  32+4a+2b+9=r  f(3)=6r  ⇒  4(27)+9a+3b+9=6r   3a+b+39=2r=64+8a+4b+18  ⇒  5a+3b=−43      ..(ii)    (i)+(ii)  ⇒  14a=56  ⇒  a=4  b=3a−33=−21  b−a=−25

x=34(27)+9a3b=99a3b=99..(i)f(2)=r32+4a+2b+9=rf(3)=6r4(27)+9a+3b+9=6r3a+b+39=2r=64+8a+4b+185a+3b=43..(ii)(i)+(ii)14a=56a=4b=3a33=21ba=25

Answered by Rasheed.Sindhi last updated on 04/Oct/21

▶  {: ((f(3)=6r)),((f(2)=r⇒6f(2)=6r)) }⇒f(3)−6f(2)=0  ⇒(4.3^3 +a.3^2 +b.3+9)                  −6(4.2^3 +a.2^2 +b.2+9)=0  ⇒15a+9b=−129.............A  ▶f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0            −108+9a−3b+9=0                 9a−3b=99                 27a−9b=297.............B  A+B: 42a=168⇒a=((168)/(42))=4  B:15(4)+9b=−129⇒b=((−129−60)/9)=−21             a=4 & b=−21            b−a=−21−4=−25

f(3)=6rf(2)=r6f(2)=6r}f(3)6f(2)=0(4.33+a.32+b.3+9)6(4.23+a.22+b.2+9)=015a+9b=129.............Af(3)=4(3)3+a(3)2+b(3)+9=0108+9a3b+9=09a3b=9927a9b=297.............BA+B:42a=168a=16842=4B:15(4)+9b=129b=129609=21a=4&b=21ba=214=25

Answered by Rasheed.Sindhi last updated on 04/Oct/21

f(3)=6r_(A)  ∧ f(2)=r_(B)    (A/B) ⇒   ((f(3))/(f(2)))=6⇒f(3)−6f(2)=0  ⇒4.3^3 +a.3^2 +b.3+9−6(4.2^3 +a.2^2 +b.2+9)=0  ⇒4.3^3 +a.3^2 +b.3+9−24.2^3 −6a.2^2 −6b.2−54=0  ⇒108+9a+3b+9−192−24a−12b−54=0     −15a−9b=129           5a+3b=−43...............(i)  ▶f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0           ⇒−108+9a−3b+9=0          ⇒3a−b=33................(ii)  (i) & (ii):   a=4,b=−21                          b−a=−21−4=−25

f(3)=6rAf(2)=rBABf(3)f(2)=6f(3)6f(2)=04.33+a.32+b.3+96(4.23+a.22+b.2+9)=04.33+a.32+b.3+924.236a.226b.254=0108+9a+3b+919224a12b54=015a9b=1295a+3b=43...............(i)f(3)=4(3)3+a(3)2+b(3)+9=0108+9a3b+9=03ab=33................(ii)(i)&(ii):a=4,b=21ba=214=25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com