Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 15558 by ajfour last updated on 11/Jun/17

Commented by ajfour last updated on 11/Jun/17

Find the areas  I, II, III, and IV  in terms of a, and b.  Curve APD is a semicircle. ABCD  is a rectangle with side a>b/2 .

$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{areas}}\:\:\boldsymbol{\mathrm{I}},\:\boldsymbol{\mathrm{II}},\:\boldsymbol{\mathrm{III}},\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{IV}} \\ $$$$\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{b}}. \\ $$$$\boldsymbol{\mathrm{Curve}}\:\boldsymbol{\mathrm{APD}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{semicircle}}.\:\boldsymbol{\mathrm{ABCD}} \\ $$$$\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{rectangle}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{\mathrm{a}}>\boldsymbol{\mathrm{b}}/\mathrm{2}\:. \\ $$

Answered by mrW1 last updated on 11/Jun/17

α=tan^(−1) (a/b)  ∠DOP=π−2α    A_(III) =(1/2)((b/2))^2 [π−2α−sin (π−2α)]  =(b^2 /8)[π−2α−sin 2α]  =(b^2 /8)[π−2α−2×((ab)/(a^2 +b^2 ))]  =(b^2 /4)[(π/2)−tan^(−1) (a/b)−((ab)/(a^2 +b^2 ))]    A_(IV) =(π/2)((b/2))^2 −A_(III)   =(b^2 /4)[tan^(−1) (a/b)+((ab)/(a^2 +b^2 ))]    A_(II) =((ab)/2)−A_(III)   =((ab)/2)−(b^2 /4)[(π/2)−tan^(−1) (a/b)−((ab)/(a^2 +b^2 ))]    A_I =((ab)/2)−A_(IV)   =((ab)/2)−(b^2 /4)[tan^(−1) (a/b)+((ab)/(a^2 +b^2 ))]

$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{a}}{\mathrm{b}} \\ $$$$\angle\mathrm{DOP}=\pi−\mathrm{2}\alpha \\ $$$$ \\ $$$$\mathrm{A}_{\mathrm{III}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)^{\mathrm{2}} \left[\pi−\mathrm{2}\alpha−\mathrm{sin}\:\left(\pi−\mathrm{2}\alpha\right)\right] \\ $$$$=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{8}}\left[\pi−\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha\right] \\ $$$$=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{8}}\left[\pi−\mathrm{2}\alpha−\mathrm{2}×\frac{\mathrm{ab}}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\right] \\ $$$$=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\left[\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{a}}{\mathrm{b}}−\frac{\mathrm{ab}}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\right] \\ $$$$ \\ $$$$\mathrm{A}_{\mathrm{IV}} =\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{A}_{\mathrm{III}} \\ $$$$=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\left[\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{ab}}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\right] \\ $$$$ \\ $$$$\mathrm{A}_{\mathrm{II}} =\frac{\mathrm{ab}}{\mathrm{2}}−\mathrm{A}_{\mathrm{III}} \\ $$$$=\frac{\mathrm{ab}}{\mathrm{2}}−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\left[\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{a}}{\mathrm{b}}−\frac{\mathrm{ab}}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\right] \\ $$$$ \\ $$$$\mathrm{A}_{\mathrm{I}} =\frac{\mathrm{ab}}{\mathrm{2}}−\mathrm{A}_{\mathrm{IV}} \\ $$$$=\frac{\mathrm{ab}}{\mathrm{2}}−\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\left[\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{ab}}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\right] \\ $$

Commented by mrW1 last updated on 11/Jun/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com