Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155586 by aaaspots last updated on 02/Oct/21

How to proof     f:X→Y  f is 1 to 1 ⇐⇒ f(E)\f(F)=f(E\F)

Howtoprooff:XYfis1to1⇐⇒f(E)f(F)=f(EF)

Answered by mindispower last updated on 04/Oct/21

by Double inclusion  let E,F bee subset oF X  let y∈F(E\F)⇒∃! a∈E\F such f(a)=y  a∈E\F⇒f(a)∈f(E),f(a)∉f(F) since f is injective  ⇒f(a)∈F(E)\F(F)⇒f(E)\f(F)⊆F(E\F)  let z∈f(E\F)⇒∃! b∈E\F ∣ f(b)=z  ⇒f(b)∈f(E),f(b)∉f(F)    because if f(b)∈f(F)  suppose f(b)∈f(F)⇒∃ a∈F f(a)=f(b)⇒a=b by injectivity  a=b,b∈F absurd since b∈E\F  ⇒z∈f(E)\f(F)  ⇒f(E\F)⊆f(E)\f(F)  ⇒f(E\F)=f(E\F)

byDoubleinclusionletE,FbeesubsetoFXletyF(EF)!aEFsuchf(a)=yaEFf(a)f(E),f(a)f(F)sincefisinjectivef(a)F(E)F(F)f(E)f(F)F(EF)letzf(EF)!bEFf(b)=zf(b)f(E),f(b)f(F)becauseiff(b)f(F)supposef(b)f(F)aFf(a)=f(b)a=bbyinjectivitya=b,bFabsurdsincebEFzf(E)f(F)f(EF)f(E)f(F)f(EF)=f(EF)

Commented by aaaspots last updated on 04/Oct/21

   how about 1 to 1⇐  f(E\F)=f(E)\f(F)

howabout1to1f(EF)=f(E)f(F)

Commented by mindispower last updated on 04/Oct/21

not true if we tack F=∅ empty set  by definition f(∅)=∅  ⇒∀ f∈f(X→Y) ∀E∈P(X)  f is 1 to 1

nottrueifwetackF=emptysetbydefinitionf()=ff(XY)EP(X)fis1to1

Commented by aaaspots last updated on 07/Oct/21

after the third lines I still understand

afterthethirdlinesIstillunderstand

Terms of Service

Privacy Policy

Contact: info@tinkutara.com