All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 155604 by SANOGO last updated on 02/Oct/21
Answered by Kamel last updated on 02/Oct/21
∀x⩾0x−x36⩽sin(x)⩽x∴∑nk=11n+k−16∑nk=11(n+k)3⩽∑nk=1sin(1n+k)⩽∑nk=11n+k∴limn→+∞1n∑nk=111+kn−16limn→+∞1n21n∑nk=11(1+kn)3⩽limn→+∞∑nk=1sin(1n+k)⩽limn→+∞1n∑nk=111+knSo:∫01dx1+x−limn→+∞1n2∫01dx(1+x)3⩽limn→+∞∑nk=1sin(1n+k)⩽∫01dx1+xThen:limn→+∞∑nk=1sin(1n+k)=Ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com