Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86313 by john santu last updated on 28/Mar/20

∫_0 ^(π/2)  (dx/(√(1+tan x)))

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dx}}{\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}} \\ $$

Commented by john santu last updated on 28/Mar/20

((√(sin x))/(√(sin x+cos x))) + ((√(cos x))/(√(sin x+cos x))) = 1  how ?

$$\frac{\sqrt{\mathrm{sin}\:{x}}}{\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}}\:+\:\frac{\sqrt{\mathrm{cos}\:{x}}}{\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}}\:=\:\mathrm{1} \\ $$$${how}\:? \\ $$

Commented by john santu last updated on 28/Mar/20

(√(cos x)) + (√(sin x)) = (√(sin x+cos x)) ?

$$\sqrt{\mathrm{cos}\:{x}}\:+\:\sqrt{\mathrm{sin}\:{x}}\:=\:\sqrt{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:? \\ $$

Answered by TANMAY PANACEA. last updated on 28/Mar/20

i think...  ∫_0 ^(π/2) (dx/(1+((√(sinx))/(√(cosx)))))=∫_0 ^(π/2) ((√(cosx))/((√(sinx)) +(√(cosx))))dx  using ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx  I=∫_0 ^(π/2) ((√(cos((π/2)−x)))/((√(sin((π/2)−x))) +(√(cos((π/2)−x)))))dx  =∫_0 ^(π/2) ((√(sinx))/((√(cosx)) +(√(sinx))))dx  2I=∫_0 ^(π/2) ((√(cosx))/((√(sinx)) +(√(cosx))))+((√(sinx))/((√(cosx)) +(√(sinx))))dx  2I=∫_0 ^(π/2) dx  I=(π/2)×(1/2)=(π/4)

$${i}\:{think}... \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\frac{\sqrt{{sinx}}}{\sqrt{{cosx}}}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cosx}}}{\sqrt{{sinx}}\:+\sqrt{{cosx}}}{dx} \\ $$$${using}\:\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{a}} {f}\left({a}−{x}\right){dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}}{\sqrt{{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}\:+\sqrt{{cos}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{sinx}}}{\sqrt{{cosx}}\:+\sqrt{{sinx}}}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{cosx}}}{\sqrt{{sinx}}\:+\sqrt{{cosx}}}+\frac{\sqrt{{sinx}}}{\sqrt{{cosx}}\:+\sqrt{{sinx}}}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx} \\ $$$${I}=\frac{\pi}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$

Commented by jagoll last updated on 28/Mar/20

king formula

$$\mathrm{king}\:\mathrm{formula} \\ $$

Commented by TANMAY PANACEA. last updated on 28/Mar/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by john santu last updated on 28/Mar/20

it does mean the equation wrong sir?

$$\mathrm{it}\:\mathrm{does}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{wrong}\:\mathrm{sir}? \\ $$

Commented by TawaTawa1 last updated on 28/Mar/20

Sir tanmay, please help with  Q86324.

$$\mathrm{Sir}\:\mathrm{tanmay},\:\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\:\mathrm{Q86324}. \\ $$

Answered by MJS last updated on 28/Mar/20

∫(dx/(√(1+tan x)))=       [t=(√(1+tan x)) → dx=2cos^2  x (√(1+tan x))dt]  =2∫(dt/(t^4 −2t^2 +2))  and now it′s easy

$$\int\frac{{dx}}{\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$

Commented by jagoll last updated on 28/Mar/20

= 2 ∫ (dt/((t^2 −1)^2 +1))   let t^2 −1 = tan w⇒ 2t dt = sec^2 w dw  = ∫ ((sec^2 w dw)/(sec^2 w)) = w + c  = tan^(−1) (t^2 −1) + c  = tan^(−1) (tan (x)) + c  it correct sir?

$$=\:\mathrm{2}\:\int\:\frac{\mathrm{dt}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\: \\ $$$$\mathrm{let}\:\mathrm{t}^{\mathrm{2}} −\mathrm{1}\:=\:\mathrm{tan}\:\mathrm{w}\Rightarrow\:\mathrm{2t}\:\mathrm{dt}\:=\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\:\mathrm{dw} \\ $$$$=\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\:\mathrm{dw}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}}\:=\:\mathrm{w}\:+\:\mathrm{c} \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)\:+\:\mathrm{c} \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:\left(\mathrm{x}\right)\right)\:+\:\mathrm{c} \\ $$$$\mathrm{it}\:\mathrm{correct}\:\mathrm{sir}? \\ $$

Commented by MJS last updated on 28/Mar/20

no  w=arctan (t^2 −1) → dt=((t^4 −2t^3 +2)/(2t))dw  ⇒ ∫(dw/(√(1+tan w))) so you′re back at the start

$$\mathrm{no} \\ $$$${w}=\mathrm{arctan}\:\left({t}^{\mathrm{2}} −\mathrm{1}\right)\:\rightarrow\:{dt}=\frac{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}}{\mathrm{2}{t}}{dw} \\ $$$$\Rightarrow\:\int\frac{{dw}}{\sqrt{\mathrm{1}+\mathrm{tan}\:{w}}}\:\mathrm{so}\:\mathrm{you}'\mathrm{re}\:\mathrm{back}\:\mathrm{at}\:\mathrm{the}\:\mathrm{start} \\ $$

Commented by MJS last updated on 28/Mar/20

we must decompose  2∫(dt/(t^4 −2t^2 +2))=  =∫((at+b)/(t^2 −(√(2+2(√2)))t+(√2)))dt+∫((ct+d)/(t^2 +(√(2+2(√2)t+(√2)))))dt=  =−((√(−1+(√2)))/2)∫((t−(√(2+2(√2))))/(t^2 −(√(2+2(√2)))t+(√2)))dt+((√(−1+(√2)))/2)∫((t+(√(2+2(√2))))/(t^2 +(√(2+(√2)))t+(√2)))dt  now use formula

$$\mathrm{we}\:\mathrm{must}\:\mathrm{decompose} \\ $$$$\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}}= \\ $$$$=\int\frac{{at}+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt}+\int\frac{{ct}+{d}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{t}+\sqrt{\mathrm{2}}}}{dt}= \\ $$$$=−\frac{\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\int\frac{{t}−\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt}+\frac{\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}}}}{\mathrm{2}}\int\frac{{t}+\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}{t}+\sqrt{\mathrm{2}}}{dt} \\ $$$$\mathrm{now}\:\mathrm{use}\:\mathrm{formula} \\ $$

Commented by jagoll last updated on 28/Mar/20

waw...yes sir. i try solve it

$$\mathrm{waw}...\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{try}\:\mathrm{solve}\:\mathrm{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com