Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155710 by SANOGO last updated on 03/Oct/21

lim_(x−oo)    (1/(n(√n)))  Σ_(k=1) ^n E((√(k)))

$$\mathrm{li}\underset{{x}−{oo}} {\mathrm{m}}\:\:\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{\left.{k}\right)}\right. \\ $$$$ \\ $$

Commented by yeti123 last updated on 03/Oct/21

lim_(x→∞)  (1/(n(√n))) Σ_(k=1) ^n E((√k)) = (1/(n(√n)))Σ_(k=1) ^n E((√k))

$$\underset{\boldsymbol{{x}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\boldsymbol{{n}}\sqrt{\boldsymbol{{n}}}}\:\underset{{k}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}{E}\left(\sqrt{{k}}\right)\:=\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{{k}}\right) \\ $$

Answered by puissant last updated on 03/Oct/21

L  =lim_(n→+∞)  (1/(n(√n)))Σ_(k=1) ^n E((√k))   L =lim_(n→+∞)  (1/n)Σ_(k=1) ^n (1/( (√n)))E((√k))  =lim_(n→+∞)  (1/n)Σ_(k=1) ^n E((√(k/n)))  Qui est sous la forme ((b−a)/n)Σ_(k=1) ^n f(a+k((b−a)/n))  il s′agit de la somme de riemann on a donc :  lim_(n→+∞)  ((b−a)/n)Σ_(k=1) ^n f(a+k((b−a)/n))=∫_a ^b f(x)dx  ⇒ L=∫_0 ^1 E(x)dx=0(1−0)=0..                  ∴∵  L=lim_(n→+∞)  (1/(n(√n)))Σ_(k=1) ^n E((√k))=0..                     ...........Le puissant...........

$$\mathscr{L}\:\:=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{{k}}\right) \\ $$$$\:\mathscr{L}\:=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}{E}\left(\sqrt{{k}}\right) \\ $$$$=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{\frac{{k}}{{n}}}\right) \\ $$$${Qui}\:{est}\:{sous}\:{la}\:{forme}\:\frac{{b}−{a}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({a}+{k}\frac{{b}−{a}}{{n}}\right) \\ $$$${il}\:{s}'{agit}\:{de}\:{la}\:{somme}\:{de}\:{riemann}\:{on}\:{a}\:{donc}\:: \\ $$$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{{b}−{a}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({a}+{k}\frac{{b}−{a}}{{n}}\right)=\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$$\Rightarrow\:\mathscr{L}=\int_{\mathrm{0}} ^{\mathrm{1}} {E}\left({x}\right){dx}=\mathrm{0}\left(\mathrm{1}−\mathrm{0}\right)=\mathrm{0}.. \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\therefore\because\:\:\mathscr{L}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{{k}}\right)=\mathrm{0}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...........\mathscr{L}{e}\:{puissant}........... \\ $$

Commented by SANOGO last updated on 03/Oct/21

merci bien mon frere

$${merci}\:{bien}\:{mon}\:{frere} \\ $$

Commented by Kamel last updated on 04/Oct/21

Mr.Puissant yE(x)≠E(xy)

$${Mr}.{Puissant}\:{yE}\left({x}\right)\neq{E}\left({xy}\right) \\ $$

Commented by puissant last updated on 04/Oct/21

Thanks Mr Kamel..  Mr Sanogo Desole^� e..

$${Thanks}\:{Mr}\:{Kamel}.. \\ $$$${Mr}\:{Sanogo}\:{Desol}\acute {{e}e}.. \\ $$

Answered by Kamel last updated on 04/Oct/21

S_n =Σ_(k=1) ^n [(√k)]=Σ_(k=1) ^n (√k)−Σ_(k=1) ^n {(√k)}  ∀1≤k≤n  0≤ Σ_(k=1) ^n {(√k)}<n ⇒0≤(1/( n(√n)))Σ_(k=1) ^n {(√k)}<(1/( (√n)))  ∴  lim_(n→+∞) (1/(n(√n)))Σ_(k=1) ^n [(√k)]=lim_(n→+∞) (1/n)Σ_(k=1) ^n (√(k/n))=∫_0 ^1 (√x)dx                                           =(2/3)

$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\sqrt{{k}}\right]=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{{k}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\sqrt{{k}}\right\} \\ $$$$\forall\mathrm{1}\leqslant{k}\leqslant{n}\:\:\mathrm{0}\leqslant\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\sqrt{{k}}\right\}<{n}\:\Rightarrow\mathrm{0}\leqslant\frac{\mathrm{1}}{\:{n}\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{\sqrt{{k}}\right\}<\frac{\mathrm{1}}{\:\sqrt{{n}}} \\ $$$$\therefore\:\:\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{{n}\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\sqrt{{k}}\right]=\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\frac{{k}}{{n}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by SANOGO last updated on 04/Oct/21

merci bien

$$\mathrm{merci}\:\mathrm{bien} \\ $$

Answered by mindispower last updated on 04/Oct/21

x−1<E(x)≤x  ⇒Σ(1/(n(√n)))((√k)−1)≤Σ_(k=1) ^n ((E((√k)))/(n(√n)))<Σ_(k=1) ^n (1/(n(√n)))(√k))  Σ(1/n)(√(k/n))−(1/( (√n)))≤S≤∫_0 ^1 (√x)dx  ∫_0 ^1 (√x)dx−lim_(n→∞) (1/( (√n)))≤S≤∫_0 ^1 (√x)dx  (3/2)≤S≤(3/2)

$${x}−\mathrm{1}<{E}\left({x}\right)\leqslant{x} \\ $$$$\left.\Rightarrow\Sigma\frac{\mathrm{1}}{{n}\sqrt{{n}}}\left(\sqrt{{k}}−\mathrm{1}\right)\leqslant\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{E}\left(\sqrt{{k}}\right)}{{n}\sqrt{{n}}}<\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}\sqrt{{n}}}\sqrt{{k}}\right) \\ $$$$\Sigma\frac{\mathrm{1}}{{n}}\sqrt{\frac{{k}}{{n}}}−\frac{\mathrm{1}}{\:\sqrt{{n}}}\leqslant{S}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{dx}−\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\leqslant{S}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{dx} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\leqslant{S}\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$

Commented by SANOGO last updated on 04/Oct/21

merci bien

$${merci}\:{bien} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com