Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 155720 by ajfour last updated on 03/Oct/21

Commented by ajfour last updated on 03/Oct/21

If the polynomial curve is    y=x(x^2 −p^2 ) , find r(p).

$${If}\:{the}\:{polynomial}\:{curve}\:{is} \\ $$$$\:\:{y}={x}\left({x}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)\:,\:{find}\:{r}\left({p}\right). \\ $$

Answered by TheSupreme last updated on 03/Oct/21

f(x)=x(x−p)(x+p)  P (x,x(x^2 −p^2 ))  P (r(1+cos(arctan(f′(P)),r(1−sin(arctan(f′(P))  f′(P)=(3x^2 −p^2 )

$${f}\left({x}\right)={x}\left({x}−{p}\right)\left({x}+{p}\right) \\ $$$${P}\:\left({x},{x}\left({x}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)\right) \\ $$$${P}\:\left({r}\left(\mathrm{1}+{cos}\left({arctan}\left({f}'\left({P}\right)\right),{r}\left(\mathrm{1}−{sin}\left({arctan}\left({f}'\left({P}\right)\right)\right.\right.\right.\right.\right. \\ $$$${f}'\left({P}\right)=\left(\mathrm{3}{x}^{\mathrm{2}} −{p}^{\mathrm{2}} \right) \\ $$$$ \\ $$$$ \\ $$

Answered by mr W last updated on 03/Oct/21

touching point A(a,b) with  b=a(a^2 −p^2 )  tan θ=y′=3x^2 −p^2 =3a^2 −p^2   a=r(1+sin θ)  b=r(1−cos θ)  (b/a)=((1−cos θ)/(1+sin θ))  a^2 −p^2 =((1−cos θ)/(1+sin θ))  ⇒tan θ−((3(1−cos θ))/(1+sin θ))=2p^2    { ((p=(√((1/2)[tan θ−((3(1−cos θ))/(1+sin θ))])))),((r=(1/(1+sin θ))(√((1/2)[tan θ−((1−cos θ)/(1+sin θ))])))) :}

$${touching}\:{point}\:{A}\left({a},{b}\right)\:{with} \\ $$$${b}={a}\left({a}^{\mathrm{2}} −{p}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\theta={y}'=\mathrm{3}{x}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{2}} −{p}^{\mathrm{2}} \\ $$$${a}={r}\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$${b}={r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta} \\ $$$${a}^{\mathrm{2}} −{p}^{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\mathrm{tan}\:\theta−\frac{\mathrm{3}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{1}+\mathrm{sin}\:\theta}=\mathrm{2}{p}^{\mathrm{2}} \\ $$$$\begin{cases}{{p}=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{tan}\:\theta−\frac{\mathrm{3}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{1}+\mathrm{sin}\:\theta}\right]}}\\{{r}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:\theta}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{tan}\:\theta−\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{sin}\:\theta}\right]}}\end{cases} \\ $$

Commented by mr W last updated on 03/Oct/21

Commented by mr W last updated on 03/Oct/21

Commented by mr W last updated on 03/Oct/21

Answered by ajfour last updated on 01/Nov/21

  x=r+rcos θ    y=c=r−rsin θ   ;  p=1    ⇒  c=r(1−2sin φcos φ)  2φ=90°−θ  ⇒ r(1−cos 2φ)=x(x^2 −p^2 )       r(1+cos θ)=x  2rsin^2 ((π/4)−(θ/2))=2rcos^2 (θ/2)(4r^2 cos^4 (θ/2)−p^2 )  say  (θ/2)=δ  (cos δ−sin δ)^2 =cos^2 δ(4r^2 cos^4 δ−p^2 )  ⇒  2(1−sin θ)      =(1+cos θ)[((4c^2 )/((1−sin θ)^2 ))−1]  2(1−sin θ)^3    =(1+cos θ){4c^2 −(1−sin θ)^2 }  ......

$$\:\:{x}={r}+{r}\mathrm{cos}\:\theta \\ $$$$\:\:{y}={c}={r}−{r}\mathrm{sin}\:\theta\:\:\:;\:\:{p}=\mathrm{1} \\ $$$$\:\:\Rightarrow\:\:{c}={r}\left(\mathrm{1}−\mathrm{2sin}\:\phi\mathrm{cos}\:\phi\right) \\ $$$$\mathrm{2}\phi=\mathrm{90}°−\theta \\ $$$$\Rightarrow\:{r}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\phi\right)={x}\left({x}^{\mathrm{2}} −{p}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:{r}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)={x} \\ $$$$\mathrm{2}{r}\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)=\mathrm{2}{r}\mathrm{cos}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\left(\mathrm{4}{r}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}−{p}^{\mathrm{2}} \right) \\ $$$${say}\:\:\frac{\theta}{\mathrm{2}}=\delta \\ $$$$\left(\mathrm{cos}\:\delta−\mathrm{sin}\:\delta\right)^{\mathrm{2}} =\mathrm{cos}\:^{\mathrm{2}} \delta\left(\mathrm{4}{r}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{4}} \delta−{p}^{\mathrm{2}} \right) \\ $$$$\Rightarrow \\ $$$$\mathrm{2}\left(\mathrm{1}−\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:=\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\left[\frac{\mathrm{4}{c}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }−\mathrm{1}\right] \\ $$$$\mathrm{2}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{3}} \\ $$$$\:=\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\left\{\mathrm{4}{c}^{\mathrm{2}} −\left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} \right\} \\ $$$$...... \\ $$$$\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com