Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 155898 by Tawa11 last updated on 05/Oct/21

Show that     tan^(− 1) ((1/3))   +   sin^(− 1) ((1/3))   =   (π/4)

$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\mathrm{tan}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:+\:\:\:\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:=\:\:\:\frac{\pi}{\mathrm{4}} \\ $$

Answered by immortel last updated on 05/Oct/21

L=tan(tan^(−1) ((1/3))+sin^(−1) ((1/3)))=((tan(arctan((1/3)))+tan(arcsin(1/3)))/(1−tan(arctan((1/3)))tan(arcsin(1/3))))  or tan(arcsinx)=(x/( (√(1−x^2 ))))  donc  tan(arcsin(1/3))=((1/3)/( (√(1−(1/9)))))                                            =(1/( (√8)))=((√2)/4)  ainsi L=(((1/3)+((√2)/4))/(1−((√2)/(12))))                 =(((4+3(√2)))/(12))×((12)/(12−(√2)))               =(((4+3(√2))(12+(√2)))/((12−(√2))(12+(√2))))             =((48+4(√2)+36(√2)+6)/(144−2))            =((54+40(√2))/(142))=((27+20(√2))/(71))<1  donc  L≠1 ainsi    tan^(− 1) ((1/3))   +   sin^(− 1) ((1/3))   ≠  (π/4)       ..........l′immortel........

$${L}={tan}\left({tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)=\frac{{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)+{tan}\left({arcsin}\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{1}−{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right){tan}\left({arcsin}\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$${or}\:{tan}\left({arcsinx}\right)=\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${donc}\:\:{tan}\left({arcsin}\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\frac{\mathrm{1}}{\mathrm{3}}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{9}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{8}}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$${ainsi}\:{L}=\frac{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}}{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{12}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{4}+\mathrm{3}\sqrt{\mathrm{2}}\right)}{\mathrm{12}}×\frac{\mathrm{12}}{\mathrm{12}−\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{4}+\mathrm{3}\sqrt{\mathrm{2}}\right)\left(\mathrm{12}+\sqrt{\mathrm{2}}\right)}{\left(\mathrm{12}−\sqrt{\mathrm{2}}\right)\left(\mathrm{12}+\sqrt{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{48}+\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{36}\sqrt{\mathrm{2}}+\mathrm{6}}{\mathrm{144}−\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{54}+\mathrm{40}\sqrt{\mathrm{2}}}{\mathrm{142}}=\frac{\mathrm{27}+\mathrm{20}\sqrt{\mathrm{2}}}{\mathrm{71}}<\mathrm{1} \\ $$$${donc}\:\:{L}\neq\mathrm{1}\:{ainsi}\: \\ $$$$\:\mathrm{tan}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:+\:\:\:\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:\neq\:\:\frac{\pi}{\mathrm{4}} \\ $$$$\: \\ $$$$\:\:..........{l}'{immortel}........ \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa11 last updated on 05/Oct/21

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by mr W last updated on 05/Oct/21

α=tan^(−1) (1/3) ⇒tan α=(1/3)  β=sin^(−1) (1/3) ⇒sin β=(1/3) ⇒tan β=(1/( 2(√2)))  tan (α+β)=((tan α+tan β)/(1−tan α tan β))  =(((1/3)+(1/( 2(√2))))/(1−(1/( 6(√2)))))=((3+2(√2))/( 6(√2)−1))=((27+20(√2))/(71))  ≈0.778≠1  ⇒α+β≠45°  in fact tan^(− 1) ((1/3))+sin^(− 1) ((1/3)) ≈38°

$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\beta=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\mathrm{sin}\:\beta=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\mathrm{tan}\:\beta=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{tan}\:\left(\alpha+\beta\right)=\frac{\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta}{\mathrm{1}−\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{1}−\frac{\mathrm{1}}{\:\mathrm{6}\sqrt{\mathrm{2}}}}=\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\:\mathrm{6}\sqrt{\mathrm{2}}−\mathrm{1}}=\frac{\mathrm{27}+\mathrm{20}\sqrt{\mathrm{2}}}{\mathrm{71}} \\ $$$$\approx\mathrm{0}.\mathrm{778}\neq\mathrm{1} \\ $$$$\Rightarrow\alpha+\beta\neq\mathrm{45}° \\ $$$${in}\:{fact}\:\mathrm{tan}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\approx\mathrm{38}° \\ $$

Commented by Tawa11 last updated on 05/Oct/21

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com